RF-Enhanced Pavement Markings for Mobile Robot Lane Detection

The ability to detect and keep in lanes is crucial for the safe operation of autonomous mobile robots in construction sites and their coordination with humans in autonomous ports or logistic centers. While computer vision-based lane detection algorithms perform well under normal conditions, their pe...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE International Conference on Automation Science and Engineering (CASE) s. 1 - 6
Hlavní autoři: Suo, Dajiang, Li, Heyi, Bhattacharyya, Rahul, Melia-Segui, Joan, Sarma, Sanjay E.
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 26.08.2023
Témata:
ISSN:2161-8089
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The ability to detect and keep in lanes is crucial for the safe operation of autonomous mobile robots in construction sites and their coordination with humans in autonomous ports or logistic centers. While computer vision-based lane detection algorithms perform well under normal conditions, their performance may degrade under low visibility conditions and in adverse weather. Since robots are not constrained by human perception limits, this paper proposes a radio frequency (RF) pavement marking system that builds on Radio Frequency Identification (RFID), a short-range communication technology, to provide lane-detection assistance. We present not only the hardware designs for the RFID systems on both vehicles and roads but also a filtering algorithm to mitigate the noise in the backscattered RF signals for lane detection. Experimental results show that the information on lane keeping provided by the RF pavement markings aligns with the visual channel when mobile robots move at a speed of less than 40 miles per hour.
AbstractList The ability to detect and keep in lanes is crucial for the safe operation of autonomous mobile robots in construction sites and their coordination with humans in autonomous ports or logistic centers. While computer vision-based lane detection algorithms perform well under normal conditions, their performance may degrade under low visibility conditions and in adverse weather. Since robots are not constrained by human perception limits, this paper proposes a radio frequency (RF) pavement marking system that builds on Radio Frequency Identification (RFID), a short-range communication technology, to provide lane-detection assistance. We present not only the hardware designs for the RFID systems on both vehicles and roads but also a filtering algorithm to mitigate the noise in the backscattered RF signals for lane detection. Experimental results show that the information on lane keeping provided by the RF pavement markings aligns with the visual channel when mobile robots move at a speed of less than 40 miles per hour.
Author Melia-Segui, Joan
Li, Heyi
Sarma, Sanjay E.
Bhattacharyya, Rahul
Suo, Dajiang
Author_xml – sequence: 1
  givenname: Dajiang
  surname: Suo
  fullname: Suo, Dajiang
  email: djsuo@mit.edu
  organization: Massachusetts Institute of Technology,The Department of Mechanical Engineering,Cambridge,MA,USA
– sequence: 2
  givenname: Heyi
  surname: Li
  fullname: Li, Heyi
  email: heyi@mit.edu
  organization: Massachusetts Institute of Technology,The Department of Mechanical Engineering,Cambridge,MA,USA
– sequence: 3
  givenname: Rahul
  surname: Bhattacharyya
  fullname: Bhattacharyya, Rahul
  email: rahul_b@mit.edu
  organization: Massachusetts Institute of Technology,The Department of Mechanical Engineering,Cambridge,MA,USA
– sequence: 4
  givenname: Joan
  surname: Melia-Segui
  fullname: Melia-Segui, Joan
  email: melia@uoc.edu
  organization: Universitat Oberta de Catalunya (UOC),Faculty of Computer Science, Multimedia and Telecommunication,Barcelona,Spain
– sequence: 5
  givenname: Sanjay E.
  surname: Sarma
  fullname: Sarma, Sanjay E.
  email: sesarma@mit.edu
  organization: Massachusetts Institute of Technology,The Department of Mechanical Engineering,Cambridge,MA,USA
BookMark eNo1j91KwzAYQKMouM29gWBeoN2XpM3PhRejdjroUKZejzT9otEtkbYIvr0D9ercHc6ZkrOYIhJyzSBnDMyiWj7VpZRa5Ry4yBlwCcIUJ2RulNGiBMFBmvKUTDiTLNOgzQWZDsM7gATN2ITcbFdZHd9sdNjRR_uFB4wj3dj-I8TXgfrU001qwx7pNrVppI2NSG9xRDeGFC_Jubf7Aed_nJGXVf1c3WfNw926WjZZ4FCMmWZovC9VB8o76KRiwrUdcgMWLfJCtI47rctjM3orjylSFwatQZSqlShm5OrXGxBx99mHg-2_d_-74gftv0vF
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CASE56687.2023.10260394
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9798350320695
EISSN 2161-8089
EndPage 6
ExternalDocumentID 10260394
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IN
AAJGR
AAWTH
ACGFS
ADZIZ
AKRWK
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IPLJI
M43
OCL
RIE
RIL
ID FETCH-LOGICAL-i204t-81e9ff57d07fc0d6713cbde290aeae243bc2c885798efa6ced6849ea9ee67b6e3
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001545311800314&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:50:46 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i204t-81e9ff57d07fc0d6713cbde290aeae243bc2c885798efa6ced6849ea9ee67b6e3
PageCount 6
ParticipantIDs ieee_primary_10260394
PublicationCentury 2000
PublicationDate 2023-Aug.-26
PublicationDateYYYYMMDD 2023-08-26
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-Aug.-26
  day: 26
PublicationDecade 2020
PublicationTitle IEEE International Conference on Automation Science and Engineering (CASE)
PublicationTitleAbbrev CASE
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0060811
Score 1.8497851
Snippet The ability to detect and keep in lanes is crucial for the safe operation of autonomous mobile robots in construction sites and their coordination with humans...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Filtering algorithms
Lane detection
Radio frequency
RF signals
Roads
Robot kinematics
Visualization
Title RF-Enhanced Pavement Markings for Mobile Robot Lane Detection
URI https://ieeexplore.ieee.org/document/10260394
WOSCitedRecordID wos001545311800314&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07TwMxDI5oxQALryLeysCacpfLOcnAgEorhlJV5aFu1SVxBMsdKld-P7m05TEwsEWRIktfFNux_dmEXPIMvdeoGIC3TPC0YMo6YJA54W2CqYms9-ehHI3UdKrHK7J65MIgYiw-w26zjLl8V9lFEyoLLzx435kWLdKSEpZkrbXahWDb0lUBV5roq97NQz-4Kkp2mwHh3fXRX0NUog0Z7PxT-i7pfLPx6PjLzuyRDSz3yfaPRoIH5HoyYP3yJWbz6biIPcBr2vBwmkA4DY4pva9MUAB0UpmqpsOiRHqLdazDKjvkadB_7N2x1WAE9soTUTOVovY-ly6RAU8H4aNpjUOukwIL5CIzllulcqkV-gKCaFBCY6ERQRrA7JC0y6rEI0KBa249ag7aijw3xhsQqRMKcuedsMek0yAxe1v2vpitQTj5Y_-UbDV4N1FXDmekXc8XeE427Uf9-j6_iDf2CZz0l54
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwMhECZaTdSLrxrfcvBK3WVZFg4eTG1TY9s0tZremgWG2MuuqVt_v0BbHwcP3ggJmeQjzAwz880gdE0TsFaCIJxbTRiNcyK04YQnhlkdQawC6_2lm_X7YjyWgyVZPXBhACAUn0HDL0Mu35R67kNl7oU77zuRbB1tpIzRaEHXWile7qxbvCzhiiN507x7ajlnRWQNPyK8sTr8a4xKsCLt3X_K30P1bz4eHnxZmn20BsUB2vnRSvAQ3Q7bpFW8hnw-HuShC3iFPRPHh8Kxc01xr1ROBeBhqcoKd_MC8D1UoRKrqKPndmvU7JDlaAQypRGriIhBWptmJsocooa7r6ZWBqiMcsiBskRpqoVIMynA5tyJ5oJJyCUAzxSH5AjVirKAY4Q5lVRbkJRLzdJUKas4iw0TPDXWMH2C6h6Jydui-8VkBcLpH_tXaKsz6nUn3Yf-4xna9tj7GCzl56hWzeZwgTb1RzV9n12G2_sEsXCa5Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE+International+Conference+on+Automation+Science+and+Engineering+%28CASE%29&rft.atitle=RF-Enhanced+Pavement+Markings+for+Mobile+Robot+Lane+Detection&rft.au=Suo%2C+Dajiang&rft.au=Li%2C+Heyi&rft.au=Bhattacharyya%2C+Rahul&rft.au=Melia-Segui%2C+Joan&rft.date=2023-08-26&rft.pub=IEEE&rft.eissn=2161-8089&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FCASE56687.2023.10260394&rft.externalDocID=10260394