Side Information Driven Image Coding for Machines

With the continuous improvement of computer vision technology, more and more image information is consumed by machines rather than humans. Image coding for machines (ICM) is to compress image data such that they can be more efficiently sent to the receiver side for machines to conduct visual analysi...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Picture Coding Symposium s. 193 - 197
Hlavní autori: Zhang, Zhongpeng, Liu, Ying
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 07.12.2022
Predmet:
ISSN:2472-7822
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:With the continuous improvement of computer vision technology, more and more image information is consumed by machines rather than humans. Image coding for machines (ICM) is to compress image data such that they can be more efficiently sent to the receiver side for machines to conduct visual analysis. A typical deep learning-based ICM structure contains one codec network which compresses and transmits images through the Internet and one semantic analysis task network such as image classification and object recognition. In the codec part, the side information is the hyper-prior or hierarchical layers of hyper-priors for the compression of image latent representations. In this paper, we propose a Side Information Driven Image Coding (SIIC) framework based on deep learning. It only compresses and transmits the side information to the receiver for image classification tasks. We obtain a top-l accuracy of 70.38% on the ImageNet1K dataset with 0.046 bits per pixel.
ISSN:2472-7822
DOI:10.1109/PCS56426.2022.10018039