Side Information Driven Image Coding for Machines
With the continuous improvement of computer vision technology, more and more image information is consumed by machines rather than humans. Image coding for machines (ICM) is to compress image data such that they can be more efficiently sent to the receiver side for machines to conduct visual analysi...
Saved in:
| Published in: | Picture Coding Symposium pp. 193 - 197 |
|---|---|
| Main Authors: | , |
| Format: | Conference Proceeding |
| Language: | English |
| Published: |
IEEE
07.12.2022
|
| Subjects: | |
| ISSN: | 2472-7822 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | With the continuous improvement of computer vision technology, more and more image information is consumed by machines rather than humans. Image coding for machines (ICM) is to compress image data such that they can be more efficiently sent to the receiver side for machines to conduct visual analysis. A typical deep learning-based ICM structure contains one codec network which compresses and transmits images through the Internet and one semantic analysis task network such as image classification and object recognition. In the codec part, the side information is the hyper-prior or hierarchical layers of hyper-priors for the compression of image latent representations. In this paper, we propose a Side Information Driven Image Coding (SIIC) framework based on deep learning. It only compresses and transmits the side information to the receiver for image classification tasks. We obtain a top-l accuracy of 70.38% on the ImageNet1K dataset with 0.046 bits per pixel. |
|---|---|
| AbstractList | With the continuous improvement of computer vision technology, more and more image information is consumed by machines rather than humans. Image coding for machines (ICM) is to compress image data such that they can be more efficiently sent to the receiver side for machines to conduct visual analysis. A typical deep learning-based ICM structure contains one codec network which compresses and transmits images through the Internet and one semantic analysis task network such as image classification and object recognition. In the codec part, the side information is the hyper-prior or hierarchical layers of hyper-priors for the compression of image latent representations. In this paper, we propose a Side Information Driven Image Coding (SIIC) framework based on deep learning. It only compresses and transmits the side information to the receiver for image classification tasks. We obtain a top-l accuracy of 70.38% on the ImageNet1K dataset with 0.046 bits per pixel. |
| Author | Zhang, Zhongpeng Liu, Ying |
| Author_xml | – sequence: 1 givenname: Zhongpeng surname: Zhang fullname: Zhang, Zhongpeng email: zzhang13@scu.edu organization: Santa Clara University,Department of Computer Science and Engineering,Santa Clara,CA,USA,95053 – sequence: 2 givenname: Ying surname: Liu fullname: Liu, Ying email: yliu15@scu.edu organization: Santa Clara University,Department of Computer Science and Engineering,Santa Clara,CA,USA,95053 |
| BookMark | eNo1j81KxDAURqMoOI59A5G8QGvuzW-XUh0tjCiMroe0uRkjNpV2EHx7B9TVtziHA985O8ljJsauQFQAor5-bjbaKDQVCsQKhAAnZH3Eito6MEarGrW1x2yBymJpHeIZK-b5XRxMA7rWcsFgkwLxNsdxGvw-jZnfTumLMm8HvyPejCHlHT9Q_uj7t5RpvmCn0X_MVPztkr2u7l6ah3L9dN82N-syoVD70oYoQ-d6C73yBsn7SKSV9cZKcrFHBV10KvShC6q3QfkAEm0EJaPTLsolu_ztJiLafk5p8NP39v-l_AGW0kgP |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/PCS56426.2022.10018039 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences |
| EISBN | 9781665492577 1665492570 |
| EISSN | 2472-7822 |
| EndPage | 197 |
| ExternalDocumentID | 10018039 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Science Foundation funderid: 10.13039/100000001 |
| GroupedDBID | 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI OCL RIE RIL RNS |
| ID | FETCH-LOGICAL-i204t-7df3db8c71c4a62eaafee547a673e8fc241bf84dcdbd4c7d4ad1327f143f858f3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000926892300032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:10:43 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i204t-7df3db8c71c4a62eaafee547a673e8fc241bf84dcdbd4c7d4ad1327f143f858f3 |
| PageCount | 5 |
| ParticipantIDs | ieee_primary_10018039 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-Dec.-7 |
| PublicationDateYYYYMMDD | 2022-12-07 |
| PublicationDate_xml | – month: 12 year: 2022 text: 2022-Dec.-7 day: 07 |
| PublicationDecade | 2020 |
| PublicationTitle | Picture Coding Symposium |
| PublicationTitleAbbrev | PCS |
| PublicationYear | 2022 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0001615953 |
| Score | 1.8443749 |
| Snippet | With the continuous improvement of computer vision technology, more and more image information is consumed by machines rather than humans. Image coding for... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 193 |
| SubjectTerms | Codecs hyper-prior image classification Image coding image coding for machines Internet Receivers Semantics side information Streaming media transformer Visualization |
| Title | Side Information Driven Image Coding for Machines |
| URI | https://ieeexplore.ieee.org/document/10018039 |
| WOSCitedRecordID | wos000926892300032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwMhECa28eCpPmp8h4NX2t1lWOBcbTTRpkk16a1hYUh6sDXt1t8v0K2NBw_eCGRCGMJ8wzDfQMg9uLIKuFkywVEz8ByYAW-YNsJkCnOTYSIKv8jRSE2netyQ1RMXBhFT8hn2YjO95bul3cRQWT_WC1IZ1y3SkrLckrX2AZWAzVrwhgWcZ7o_HkxEcK9jIkJR9HbCv75RSSgy7Pxz_mPS3fPx6PgHaU7IAS5OSadxIGlzPNdnJJ_MHdKGYRQ1Th9W0ZrR549gNuhgGcVpGKWvKYcS113yPnx8Gzyx5k8ENi8yqJl0nrtKWZlbMGWBxnhEAdKUkqPyNgBy5RU46yoHVjowLtw3pQ9ukVdCeX5O2ovlAi8ILaW2uYPgL3iAgPTaitxlgFhYKMCZS9KNKph9bstezHarv_qj_5ocRUWnXA95Q9r1aoO35NB-1fP16i5t1jcdkZSN |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4omugJHxjf9uB1cR-z2_aMEohASMCEG-m204SDYHj4-23rIvHgwVvTZpJ2ms43beebAXhEU5QON4soz0hGaDOMFFoVSZWrWFCiYgpE4R4fDMRkIocVWT1wYYgoBJ9R0zfDX75Z6I1_Knvy-YJEnMl9OPClsyq61u5JxaGzzLOKB5zE8mnYGuXOwfahCGna3Ir_KqQScKRd_-cMTqCxY-Sx4Q_WnMIezc-gXrmQrDqgq3NIRjNDrOIYeZ2z56W3Z6z77gwHay28OHOjrB-iKGnVgLf2y7jViaqqCNEsjXEdcWMzUwrNE42qSEkpS5QjVwXPSFjtILm0Ao02pUHNDSrjbpzcOsfIilzY7AJq88WcLoEVXOrEoPMYLKLDeqnzxMRIlGpM0agraHgVTD--E19Mt6u__qP_AY46435v2usOXm_g2Cs9RH7wW6itlxu6g0P9uZ6tlvdh474ADrmX1g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Picture+Coding+Symposium&rft.atitle=Side+Information+Driven+Image+Coding+for+Machines&rft.au=Zhang%2C+Zhongpeng&rft.au=Liu%2C+Ying&rft.date=2022-12-07&rft.pub=IEEE&rft.eissn=2472-7822&rft.spage=193&rft.epage=197&rft_id=info:doi/10.1109%2FPCS56426.2022.10018039&rft.externalDocID=10018039 |