Magic3D: High-Resolution Text-to-3D Content Creation
DreamFusion [31] has recently demonstrated the utility of a pretrained text-to-image diffusion model to optimize Neural Radiance Fields (NeRF) [23], achieving remarkable text-to-3D synthesis results. However, the method has two inherent limitations: (a) extremely slow optimization of NeRF and (b) lo...
Saved in:
| Published in: | Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) pp. 300 - 309 |
|---|---|
| Main Authors: | , , , , , , , , , |
| Format: | Conference Proceeding |
| Language: | English |
| Published: |
IEEE
01.06.2023
|
| Subjects: | |
| ISSN: | 1063-6919 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | DreamFusion [31] has recently demonstrated the utility of a pretrained text-to-image diffusion model to optimize Neural Radiance Fields (NeRF) [23], achieving remarkable text-to-3D synthesis results. However, the method has two inherent limitations: (a) extremely slow optimization of NeRF and (b) low-resolution image space supervision on NeRF, leading to low-quality 3D models with a long processing time. In this paper, we address these limitations by utilizing a two-stage optimization framework. First, we obtain a coarse model using a low-resolution diffusion prior and accelerate with a sparse 3D hash grid structure. Using the coarse representation as the initialization, we further optimize a textured 3D mesh model with an efficient differentiable renderer interacting with a high-resolution latent diffusion model. Our method, dubbed Magic3D, can create high quality 3D mesh models in 40 minutes, which is 2× faster than DreamFusion (reportedly taking 1.5 hours on average), while also achieving higher resolution. User studies show 61.7% raters to prefer our approach over DreamFusion. Together with the image-conditioned generation capabilities, we provide users with new ways to control 3D synthesis, opening up new avenues to various creative applications. |
|---|---|
| ISSN: | 1063-6919 |
| DOI: | 10.1109/CVPR52729.2023.00037 |