DF-Platter: Multi-Face Heterogeneous Deepfake Dataset
Deepfake detection is gaining significant importance in the research community. While most of the research efforts are focused towards high-quality images and videos with controlled appearance of individuals, deepfake generation algorithms now have the capability to generate deep-fakes with low-reso...
Uložené v:
| Vydané v: | Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) s. 9739 - 9748 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
01.06.2023
|
| Predmet: | |
| ISSN: | 1063-6919 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Deepfake detection is gaining significant importance in the research community. While most of the research efforts are focused towards high-quality images and videos with controlled appearance of individuals, deepfake generation algorithms now have the capability to generate deep-fakes with low-resolution, occlusion, and manipulation of multiple subjects. In this research, we emulate the real-world scenario of deepfake generation and propose the DF-Platter dataset, which contains (i) both low-resolution and high-resolution deepfakes generated using multiple generation techniques and (ii) single-subject and multiple-subject deepfakes, with face images of Indian ethnicity. Faces in the dataset are annotated for various attributes such as gender, age, skin tone, and occlusion. The dataset is prepared in 116 days with continuous usage of 32 GPUs accounting to 1,800 GB cumulative memory. With over 500 GBs in size, the dataset contains a total of 133,260 videos encompassing three sets. To the best of our knowledge, this is one of the largest datasets containing vast variability and multiple challenges. We also provide benchmark results under multiple evaluation settings using popular and state-of-the-art deepfake detection models, for c0 images and videos along with c23 and c40 compression variants. The results demonstrate a significant performance reduction in the deepfake detection task on low-resolution deep-fakes. Furthermore, existing techniques yield declined detection accuracy on multiple-subject deepfakes. It is our assertion that this database will improve the state-of-the-art by extending the capabilities of deepfake detection algorithms to real-world scenarios. The database is available at: http://iab-rubric.org/df-platter-database. |
|---|---|
| AbstractList | Deepfake detection is gaining significant importance in the research community. While most of the research efforts are focused towards high-quality images and videos with controlled appearance of individuals, deepfake generation algorithms now have the capability to generate deep-fakes with low-resolution, occlusion, and manipulation of multiple subjects. In this research, we emulate the real-world scenario of deepfake generation and propose the DF-Platter dataset, which contains (i) both low-resolution and high-resolution deepfakes generated using multiple generation techniques and (ii) single-subject and multiple-subject deepfakes, with face images of Indian ethnicity. Faces in the dataset are annotated for various attributes such as gender, age, skin tone, and occlusion. The dataset is prepared in 116 days with continuous usage of 32 GPUs accounting to 1,800 GB cumulative memory. With over 500 GBs in size, the dataset contains a total of 133,260 videos encompassing three sets. To the best of our knowledge, this is one of the largest datasets containing vast variability and multiple challenges. We also provide benchmark results under multiple evaluation settings using popular and state-of-the-art deepfake detection models, for c0 images and videos along with c23 and c40 compression variants. The results demonstrate a significant performance reduction in the deepfake detection task on low-resolution deep-fakes. Furthermore, existing techniques yield declined detection accuracy on multiple-subject deepfakes. It is our assertion that this database will improve the state-of-the-art by extending the capabilities of deepfake detection algorithms to real-world scenarios. The database is available at: http://iab-rubric.org/df-platter-database. |
| Author | Narayan, Kartik Singh, Richa Vatsa, Mayank Thakral, Kartik Agarwal, Harsh Mittal, Surbhi |
| Author_xml | – sequence: 1 givenname: Kartik surname: Narayan fullname: Narayan, Kartik email: narayan.2@iitj.ac.in organization: IIT Jodhpur,India – sequence: 2 givenname: Harsh surname: Agarwal fullname: Agarwal, Harsh email: agarwal.10@iitj.ac.in organization: IIT Jodhpur,India – sequence: 3 givenname: Kartik surname: Thakral fullname: Thakral, Kartik email: thakral.1@iitj.ac.in organization: IIT Jodhpur,India – sequence: 4 givenname: Surbhi surname: Mittal fullname: Mittal, Surbhi email: mittal.5@iitj.ac.in organization: IIT Jodhpur,India – sequence: 5 givenname: Mayank surname: Vatsa fullname: Vatsa, Mayank email: mvatsa@iitj.ac.in organization: IIT Jodhpur,India – sequence: 6 givenname: Richa surname: Singh fullname: Singh, Richa email: richa@iitj.ac.in organization: IIT Jodhpur,India |
| BookMark | eNotzM1Kw0AUQOFRFKw1b9BFXiDxztzJ_LiT1FihYhF1W27SOxKNSUmmC9--BV0dOIvvWlz0Q89CLCTkUoK_LT82r4WyyucKFOYAHv2ZSLz1DgtAkMq7czGTYDAzXvorkUzTFwCgktJ4NxPFsso2HcXI4136fOhim1XUcLri0xk-uefhMKVL5n2gb06XFGnieCMuA3UTJ_-di_fq4a1cZeuXx6fyfp21CnTMjEIk0s3Osnc7smSLQIYaNKEIQRujiJTVxrLhgmoyLmBdIwYpKWjtcC4Wf27LzNv92P7Q-LuVcNKt1HgESmpIiA |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/CVPR52729.2023.00939 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences |
| EISBN | 9798350301298 |
| EISSN | 1063-6919 |
| EndPage | 9748 |
| ExternalDocumentID | 10204714 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IH 6IL 6IN AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP OCL RIE RIL RIO |
| ID | FETCH-LOGICAL-i204t-6233aa4cd7e98da7a75fa6ac36f5ff4662aa27467e6e5aba68f3bb33f11af4483 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 32 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001062522102005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:56:30 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i204t-6233aa4cd7e98da7a75fa6ac36f5ff4662aa27467e6e5aba68f3bb33f11af4483 |
| PageCount | 10 |
| ParticipantIDs | ieee_primary_10204714 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-June |
| PublicationDateYYYYMMDD | 2023-06-01 |
| PublicationDate_xml | – month: 06 year: 2023 text: 2023-June |
| PublicationDecade | 2020 |
| PublicationTitle | Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) |
| PublicationTitleAbbrev | CVPR |
| PublicationYear | 2023 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0003211698 |
| Score | 2.4885514 |
| Snippet | Deepfake detection is gaining significant importance in the research community. While most of the research efforts are focused towards high-quality images and... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 9739 |
| SubjectTerms | Benchmark testing Computer vision Datasets and evaluation Deepfakes Face recognition Image coding Skin |
| Title | DF-Platter: Multi-Face Heterogeneous Deepfake Dataset |
| URI | https://ieeexplore.ieee.org/document/10204714 |
| WOSCitedRecordID | wos001062522102005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED3RioGpfBTxrQysLk2c2DFrS9QBVREC1K06O2epArVVm_L7sZ0AYmBgsyJZls6-3D373j2A24TQN_lOmcmMAyjCep-riLlUBCWvtM4b1ZJHOZ3ms5kqW7J64MIQUSg-o4Efhrf8amV2_qrMeXgydD_TtAMdKUVD1vq-UOEOygiVt_S4eKjuRq_lU5a47HHgNcIHHryrXyIqIYYUvX-ufgj9HzZeVH7HmSPYo-Ux9Nr0MWqdc3sC2bhg5Xvol3kfBWItK9DNnfiKl5U7KORQfjQmWlt8o2iMtYtgdR9eiofn0YS1qghs4davmctXOGJqKkkqr1CizCwKNFzYzNpUiAQx8SIiJChDjSK3XGvObRyjdWCMn0J3uVrSGURk_LOl8WRqmSpD2lQitji0mqTSuTmHvjfDfN00vph_WeDij--XcOAt3VRSXUG33uzoGvbNR73Ybm7Cdn0CQaiVog |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT8MwDLVgIMFpfAzxTQ9cM9qmTVuuG9UQY6rQQLtNTupIE2idto7fT9KWIQ4cuEWVokhOXPslfn4Atz6hbfIdMBUqA1CEtj6XEzOpCEY8lzKuVUuG0WgUTyZJ1pDVKy4MEVXFZ9S1w-otPy_U2l6VGQ_3XfMzDbZhJwwC363pWpsrFW7AjEjihiDnucld7y17CX2TP3atSnjXwvfkl4xKFUXS9j_XP4DODx_PyTaR5hC2aH4E7SaBdBr3XB1D2E9Z9lF1zLx3KmotS9HMHdial8IcFTI43-kTLTS-k9PH0sSwsgOv6cO4N2CNLgKbmfVLZjIWjhioPKIkzjHCKNQoUHGhQ60DIXxE38qIkKAQJYpYcyk5156H2sAxfgKteTGnU3BI2YdLZenUUZAokioXnkZXS4oSGasz6FgzTBd164vptwXO__h-A3uD8fNwOnwcPV3AvrV6XVd1Ca1yuaYr2FWf5Wy1vK627gs8d5jp |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%28IEEE+Computer+Society+Conference+on+Computer+Vision+and+Pattern+Recognition.+Online%29&rft.atitle=DF-Platter%3A+Multi-Face+Heterogeneous+Deepfake+Dataset&rft.au=Narayan%2C+Kartik&rft.au=Agarwal%2C+Harsh&rft.au=Thakral%2C+Kartik&rft.au=Mittal%2C+Surbhi&rft.date=2023-06-01&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=9739&rft.epage=9748&rft_id=info:doi/10.1109%2FCVPR52729.2023.00939&rft.externalDocID=10204714 |