Empirical Thresholding on Spatio-Temporal Autoencoders Trained on Surveillance Videos in a Dementia Care Unit
Agitation is a key behavioural and psychological symptom exhibited by people with dementia. These behaviours can put the patient with dementia and others' health and safety at risk. Surveillance cameras installed in long-term care facilities provide an opportunity to monitor patients continuous...
Uložené v:
| Vydané v: | 2023 20th Conference on Robots and Vision (CRV) s. 265 - 272 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
01.06.2023
|
| Predmet: | |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Agitation is a key behavioural and psychological symptom exhibited by people with dementia. These behaviours can put the patient with dementia and others' health and safety at risk. Surveillance cameras installed in long-term care facilities provide an opportunity to monitor patients continuously and flag behaviours of risks, including agitation. However, agitation behaviours occur rarely and diversely, leading to very small training data. Therefore, an anomaly detection approach is more suitable for this problem. In this paper, we train three baseline spatio-temporal convolutional autoencoders (on raw video, skeletons and segmentation mask) on 21 hours of normal activities and tested it on 9 hours of labelled normal and agitation data collected from a real patient in a dementia unit. The deployment of anomaly detection-based classifiers is challenging in real-world due to the absence of a validation set to obtain an operating threshold to regulate true positive and false positive rates. We present a new approach to create a proxy validation set for unseen agitation events utilizing the outliers within normal activities, and trained two separate autoencoders on normal and outliers activities. Then, we present 11 empirical thresholding approaches (existing, adapted and new) using either only normal training data or the proxy validation set. Our results showed consistently across raw video, skeletons and segmentation masks input that incorporating a proxy validation set improved performance both in terms of geometric means and Matthew's correlation coefficient. This paper highlights the real-world deployment challenges and assessment of the limit of true positives or false positives that can be acceptable in a clinical care environment. |
|---|---|
| AbstractList | Agitation is a key behavioural and psychological symptom exhibited by people with dementia. These behaviours can put the patient with dementia and others' health and safety at risk. Surveillance cameras installed in long-term care facilities provide an opportunity to monitor patients continuously and flag behaviours of risks, including agitation. However, agitation behaviours occur rarely and diversely, leading to very small training data. Therefore, an anomaly detection approach is more suitable for this problem. In this paper, we train three baseline spatio-temporal convolutional autoencoders (on raw video, skeletons and segmentation mask) on 21 hours of normal activities and tested it on 9 hours of labelled normal and agitation data collected from a real patient in a dementia unit. The deployment of anomaly detection-based classifiers is challenging in real-world due to the absence of a validation set to obtain an operating threshold to regulate true positive and false positive rates. We present a new approach to create a proxy validation set for unseen agitation events utilizing the outliers within normal activities, and trained two separate autoencoders on normal and outliers activities. Then, we present 11 empirical thresholding approaches (existing, adapted and new) using either only normal training data or the proxy validation set. Our results showed consistently across raw video, skeletons and segmentation masks input that incorporating a proxy validation set improved performance both in terms of geometric means and Matthew's correlation coefficient. This paper highlights the real-world deployment challenges and assessment of the limit of true positives or false positives that can be acceptable in a clinical care environment. |
| Author | Khan, Shehroz S. Iaboni, Andrea Mishra, Pratik K. Ye, Bing Newman, Kristine Mihailidis, Alex |
| Author_xml | – sequence: 1 givenname: Shehroz S. surname: Khan fullname: Khan, Shehroz S. email: shehroz.khan@uhn.ca organization: KITE University Health Network,Canada – sequence: 2 givenname: Pratik K. surname: Mishra fullname: Mishra, Pratik K. email: pratik.mishra@mail.utoronto.ca organization: KITE University Health Network,Canada – sequence: 3 givenname: Bing surname: Ye fullname: Ye, Bing email: bing.ye@utoronto.ca organization: KITE University Health Network,Canada – sequence: 4 givenname: Kristine surname: Newman fullname: Newman, Kristine email: kristine.newman@torontomu.ca organization: Daphne Cockwell School of Nursing, Toronto Metropolitan University,Canada – sequence: 5 givenname: Andrea surname: Iaboni fullname: Iaboni, Andrea email: andrea.iaboni@uhn.ca organization: KITE University Health Network,Canada – sequence: 6 givenname: Alex surname: Mihailidis fullname: Mihailidis, Alex email: alex.mihailidis@utoronto.ca organization: KITE University Health Network,Canada |
| BookMark | eNotj81Kw0AURkfQhdY-gS7mBRLvzE2azLLE-gMFQdNuyyRzYy8kM2GSCr69RV19i3M48N2ISx88CXGnIFUKzEP1vl8BlDrVoDEFgExdiKUpTIk5YKbQ4LUYNsPIkVvby_oYaTqG3rH_lMHLj9HOHJKahjHEM1-f5kC-DY7iJOto2ZP79U7xi7jvrW9J7tlRmCR7aeUjDeRntrKykeTO83wrrjrbT7T834XYPW3q6iXZvj2_VuttwhqyOcm7Ims6h0ppp1WDuTVostxAA45y6AqHZblyqqGioVy3RKhRU-daXXTgSlyI-78uE9FhjDzY-H1QoPX5POAP1qNXyg |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/CRV60082.2023.00041 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Psychology |
| EISBN | 9798350341393 |
| EndPage | 272 |
| ExternalDocumentID | 10229830 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Alzheimer's Association funderid: 10.13039/501100000143 – fundername: Natural Sciences and Engineering Research Council funderid: 10.13039/501100000038 |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i204t-5f74bfd3112d21b35a9394590b0de50f7d3886d1be7be52cee3232efdc27f0d83 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001062462800033&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Thu Jan 18 11:14:24 EST 2024 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i204t-5f74bfd3112d21b35a9394590b0de50f7d3886d1be7be52cee3232efdc27f0d83 |
| PageCount | 8 |
| ParticipantIDs | ieee_primary_10229830 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-June |
| PublicationDateYYYYMMDD | 2023-06-01 |
| PublicationDate_xml | – month: 06 year: 2023 text: 2023-June |
| PublicationDecade | 2020 |
| PublicationTitle | 2023 20th Conference on Robots and Vision (CRV) |
| PublicationTitleAbbrev | CRV |
| PublicationYear | 2023 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.8628173 |
| Snippet | Agitation is a key behavioural and psychological symptom exhibited by people with dementia. These behaviours can put the patient with dementia and others'... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 265 |
| SubjectTerms | agitation anomaly detection autoencoder Cameras Correlation coefficient dementia Health and safety Psychology Skeleton Surveillance threshold Training data |
| Title | Empirical Thresholding on Spatio-Temporal Autoencoders Trained on Surveillance Videos in a Dementia Care Unit |
| URI | https://ieeexplore.ieee.org/document/10229830 |
| WOSCitedRecordID | wos001062462800033&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09a8MwEBVt6ZCpXyn9RkNXJbYlWdZY0oROIbRuyBYk6wyGxg6JHei_ryS7KR06dBNCIHQHujvp3nsIPQrOY8UjTqSRnDDKFEkSGZOcsgyEcoQgzItNiOk0WSzkrAOreywMAPjmMxi4of_LN1XWuKeyoatOZEJthX4oRNyCtTomoTCQw9HrPHYhbeAkwT0NZ_hLM8WHjMnJPzc7Rf0f8B2e7cPKGTqA8hz19hfV5wVajVfrwlN74NS6Ytv9IOGqxG--QZqkLeHUB35q6spRVbp2ZZw6OQgwfl2z2YETHHK7zQsD1RYXJVb42T8XFgo7YBJ2GWkfvU_G6eiFdLIJpIgCVhOeC6ZzQ20mZaJQU64klYzLQAcGeJALQ5MkNqEGoYFH9jjUplWQmywSeWASeomOyqqEK4RZYAR3jIBaZUxzrZg2YBM2axdbOUt5jfrOcMt1y4yx_LbZzR_zt6jnfNO2Wt2ho3rTwD06znZ1sd08eH9-AftDo4A |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA4yBT35a-Jvc_CaLW2SpjnK3Jg4x9A6dhtJk0LBtWNrB_73NmmdePDgLYRAyHuQ917yvu8D4J4zFkjmMyS0YIgSKlEYigAlhMaGS0sIQp3YBB-Pw9lMTBqwusPCGGNc85np2KH7y9d5XNqnsq6tTkRIqgp9l1Hq4xqu1XAJeVh0e6_TwAa1jhUFd0Sc3i_VFBc0Bof_3O4ItH_gd3CyDSzHYMdkJ-Bge1V9noJFf7FMHbkHjCpnrJs_JJhn8M21SKOoppz6gA9lkVuyStuwDCMrCGG0W1euNsZKDtndpqk2-RqmGZTw0T0YphJaaBK0OWkbvA_6UW-IGuEElPqYFoglnKpEkyqX0r6nCJOCCMoEVlgbhhOuSRgG2lOGK8P86jikSqxMomOfJ1iH5Ay0sjwz5wBSrDmznIBKxlQxJanSpkrZKrtUtbMQF6BtDTdf1twY82-bXf4xfwf2h9HLaD56Gj9fgQPrp7rx6hq0ilVpbsBevCnS9erW-fYLp1Cmxw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+20th+Conference+on+Robots+and+Vision+%28CRV%29&rft.atitle=Empirical+Thresholding+on+Spatio-Temporal+Autoencoders+Trained+on+Surveillance+Videos+in+a+Dementia+Care+Unit&rft.au=Khan%2C+Shehroz+S.&rft.au=Mishra%2C+Pratik+K.&rft.au=Ye%2C+Bing&rft.au=Newman%2C+Kristine&rft.date=2023-06-01&rft.pub=IEEE&rft.spage=265&rft.epage=272&rft_id=info:doi/10.1109%2FCRV60082.2023.00041&rft.externalDocID=10229830 |