Device Interoperability for Learned Image Compression with Weights and Activations Quantization
Learning-based image compression has improved to a level where it can outperform traditional image codecs such as HEVC and VVC in terms of coding performance. In addition to good compression performance, device interoperability is essential for a compression codec to be deployed, i.e., encoding and...
Uloženo v:
| Vydáno v: | Picture Coding Symposium s. 151 - 155 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
07.12.2022
|
| Témata: | |
| ISSN: | 2472-7822 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Learning-based image compression has improved to a level where it can outperform traditional image codecs such as HEVC and VVC in terms of coding performance. In addition to good compression performance, device interoperability is essential for a compression codec to be deployed, i.e., encoding and decoding on different CPUs or GPUs should be error-free and with negligible performance reduction. In this paper, we present a method to solve the device interoperability problem of a state-of-the-art image compression network. We implement quantization to entropy networks which output entropy parameters. We suggest a simple method which can ensure cross-platform encoding and decoding, and can be implemented quickly with minor performance deviation, of 0.3% BD-rate, from floating point model results. |
|---|---|
| AbstractList | Learning-based image compression has improved to a level where it can outperform traditional image codecs such as HEVC and VVC in terms of coding performance. In addition to good compression performance, device interoperability is essential for a compression codec to be deployed, i.e., encoding and decoding on different CPUs or GPUs should be error-free and with negligible performance reduction. In this paper, we present a method to solve the device interoperability problem of a state-of-the-art image compression network. We implement quantization to entropy networks which output entropy parameters. We suggest a simple method which can ensure cross-platform encoding and decoding, and can be implemented quickly with minor performance deviation, of 0.3% BD-rate, from floating point model results. |
| Author | Alshina, Elena Koyuncu, Esin Kaup, Andre Solovyev, Timofey |
| Author_xml | – sequence: 1 givenname: Esin surname: Koyuncu fullname: Koyuncu, Esin email: andre.kaup@fau.de organization: Multimedia Communications and Signal Processing Friedrich-Alexander-Universität Erlangen-Nüurnberg,Erlangen,Germany – sequence: 2 givenname: Timofey surname: Solovyev fullname: Solovyev, Timofey email: esin.koyuncu@fau.de organization: Audiovisual Laboratory, Munich Research Center Huawei Technologies,Munich,Germany – sequence: 3 givenname: Elena surname: Alshina fullname: Alshina, Elena email: elena.alshina@huawei.com organization: Audiovisual Laboratory, Munich Research Center Huawei Technologies,Munich,Germany – sequence: 4 givenname: Andre surname: Kaup fullname: Kaup, Andre email: solovyev.timofey@huawei.com organization: Multimedia Communications and Signal Processing Friedrich-Alexander-Universität Erlangen-Nüurnberg,Erlangen,Germany |
| BookMark | eNo1kNtKAzEYhKMoWGvfQCQvsDX5N4fdy7JaLRRULHhZsps_baTNliRW6tNbPMzNMHzDXMwlOQt9QEJuOBtzzurb5-ZVKgFqDAxgzBnjFRPshIxqXXGlpKhBan1KBiA0FLoCuCCjlN7Zsam4rGU5IMs73PsO6SxkjP0Oo2n9xucDdX2kczQxoKWzrVkhbfrtLmJKvg_00-c1fUO_WudETbB00mW_N_nIEn35MCH7r590Rc6d2SQc_fmQLKb3i-axmD89zJrJvPDARC6kRatV3VZStvIoFJ1CXjthLDgHbSfQoHIllwJLiZ3jYLkGa6uSqa4sh-T6d9Yj4nIX_dbEw_L_kvIbnahZYg |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/PCS56426.2022.10018040 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences |
| EISBN | 9781665492577 1665492570 |
| EISSN | 2472-7822 |
| EndPage | 155 |
| ExternalDocumentID | 10018040 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI OCL RIE RIL RNS |
| ID | FETCH-LOGICAL-i204t-5ded769b855b5555e4c6e19f4ad2ff2bc4eae6f3154e35ecf12d172dd8306c33 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 8 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000926892300025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:10:43 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i204t-5ded769b855b5555e4c6e19f4ad2ff2bc4eae6f3154e35ecf12d172dd8306c33 |
| PageCount | 5 |
| ParticipantIDs | ieee_primary_10018040 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-Dec.-7 |
| PublicationDateYYYYMMDD | 2022-12-07 |
| PublicationDate_xml | – month: 12 year: 2022 text: 2022-Dec.-7 day: 07 |
| PublicationDecade | 2020 |
| PublicationTitle | Picture Coding Symposium |
| PublicationTitleAbbrev | PCS |
| PublicationYear | 2022 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0001615953 |
| Score | 1.9091561 |
| Snippet | Learning-based image compression has improved to a level where it can outperform traditional image codecs such as HEVC and VVC in terms of coding performance.... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 151 |
| SubjectTerms | Codecs Decoding device interoperability Entropy Image coding Interoperability learning-based image compression neural network quantization Performance evaluation Quantization (signal) |
| Title | Device Interoperability for Learned Image Compression with Weights and Activations Quantization |
| URI | https://ieeexplore.ieee.org/document/10018040 |
| WOSCitedRecordID | wos000926892300025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLbYxIHTeAzxVg5cu0fapM0RDSaQ0DTEBLtNTeJIO9BN64bEv8dJOyYOHGguVZWqkt3Enx1_NsCttHlKg9wSZ2NfVNtESjsTydx6vIs5D7k5b8_paJRNp2pck9UDFwYRQ_IZdvxtOMu3C7PxobKurxeU0V_XgEaayoqstQuokG1WIq5ZwP2e6o4Hr4LgtU9E4LyzfflXG5VgRYatf37_ENo7Ph4b_1iaI9jD4hhaNYBk9fIsT2B2j37hsxDmWyxxVRXh_mKETFmopErTnz5oC2F-H6hSYAvmY7HsPcRIS5YXlt2ZbdOzkr1sSPY1WbMNk-HDZPAY1R0UojnvJetIWLSpVDoTQgu6MDES-8olueXOcW1IGShdTDgKY4HG9bklRGNtRooycXwKzWJR4BkwI0l7uoeJy1TihNJck2dIzkliyOhn8hzaXl6zZVUjY7YV1cUfzy_hwGslJIakV9BcrzZ4Dfvmcz0vVzdBs9_yWKYR |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI5gIMFpPIZ4kwPXbl2atM0RDaZNjGmICXar2sSRdlg3rRsS_x4n7Zg4cKC5VFUqVXYTf3b82YTchzqNcKBbYnRgi2orT2ZGeWGqLd6FlLncnPdBNBzGk4kcVWR1x4UBAJd8Bk17687y9VytbaisZesFxfjX7ZI9wTnzS7rWNqSC1lmKoOIBt33ZGnXeBAJsm4rAWHPz-q9GKs6OdOv__IIj0tgy8ujox9Yckx3IT0i9gpC0WqDFKUkewS596gJ98wUsyzLcXxSxKXW1VHF6f4abCLU7QZkEm1MbjaUfLkpa0DTX9EFt2p4V9HWN0q_omg0y7j6NOz2v6qHgTZnPV57QoKNQZrEQmcALuAqhLQ1PNTOGZQrVAaEJEElBIECZNtOIabSOUVUqCM5ILZ_ncE6oClF_mQ_cxJIbITOWoW-I7glXaPbj8II0rLySRVklI9mI6vKP53fkoDd-GSSD_vD5ihxaDbk0keia1FbLNdyQffW5mhbLW6flb8L5qVg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Picture+Coding+Symposium&rft.atitle=Device+Interoperability+for+Learned+Image+Compression+with+Weights+and+Activations+Quantization&rft.au=Koyuncu%2C+Esin&rft.au=Solovyev%2C+Timofey&rft.au=Alshina%2C+Elena&rft.au=Kaup%2C+Andre&rft.date=2022-12-07&rft.pub=IEEE&rft.eissn=2472-7822&rft.spage=151&rft.epage=155&rft_id=info:doi/10.1109%2FPCS56426.2022.10018040&rft.externalDocID=10018040 |