Deep learning-based Collision-aware Multi-user Detection for Grant-free Sparse Code Multiple Access Systems

In grant-free sparse code multiple access (SCMA) systems, SCMA codebooks (CBs) are used for efficient grant-free random access. However, CB collisions can occur when multiple active users select the same CB, degrading the performance of multi-user detection (MUD) at the base station (BS). The existi...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2023 28th Asia Pacific Conference on Communications (APCC) s. 126 - 131
Hlavní autoři: Han, Minsig, Demissu, Metasebia G., Abebe, Ameha T., Kang, Chung G.
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 19.11.2023
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In grant-free sparse code multiple access (SCMA) systems, SCMA codebooks (CBs) are used for efficient grant-free random access. However, CB collisions can occur when multiple active users select the same CB, degrading the performance of multi-user detection (MUD) at the base station (BS). The existing methods modify the factor graph on the message-passing algorithm (MPA) for each CB collision scenario, resulting in high computational complexity. In this paper, we aim to confirm that even in the presence of CB collisions, MUD performance can be ensured through a deep learning (DL)-based receiver and explore its limitations. We propose a single DL architecture for collision-aware MUD (CA-MUD) that can tolerate CB collisions, without resorting to the distinct MUD processes associated with individual collision scenarios. To facilitate the generation of training data for CA-MUD that comprehensively represents the grant-free SCMA scenario, we introduce a transceiver model that regulates the number of active CBs and sets the maximum tolerable CB collisions. Simulation results demonstrate that our proposed approach allows a single CA-MUD network to handle various CB collision scenarios, including 2-fold CB collision subject to a limited number of active users.
AbstractList In grant-free sparse code multiple access (SCMA) systems, SCMA codebooks (CBs) are used for efficient grant-free random access. However, CB collisions can occur when multiple active users select the same CB, degrading the performance of multi-user detection (MUD) at the base station (BS). The existing methods modify the factor graph on the message-passing algorithm (MPA) for each CB collision scenario, resulting in high computational complexity. In this paper, we aim to confirm that even in the presence of CB collisions, MUD performance can be ensured through a deep learning (DL)-based receiver and explore its limitations. We propose a single DL architecture for collision-aware MUD (CA-MUD) that can tolerate CB collisions, without resorting to the distinct MUD processes associated with individual collision scenarios. To facilitate the generation of training data for CA-MUD that comprehensively represents the grant-free SCMA scenario, we introduce a transceiver model that regulates the number of active CBs and sets the maximum tolerable CB collisions. Simulation results demonstrate that our proposed approach allows a single CA-MUD network to handle various CB collision scenarios, including 2-fold CB collision subject to a limited number of active users.
Author Kang, Chung G.
Abebe, Ameha T.
Han, Minsig
Demissu, Metasebia G.
Author_xml – sequence: 1
  givenname: Minsig
  surname: Han
  fullname: Han, Minsig
  email: als4585@korea.ac.kr
  organization: Korea University,School of Electrical Engineering,Seoul,Republic of Korea
– sequence: 2
  givenname: Metasebia G.
  surname: Demissu
  fullname: Demissu, Metasebia G.
  email: met4@korea.ac.kr
  organization: Korea University,School of Electrical Engineering,Seoul,Republic of Korea
– sequence: 3
  givenname: Ameha T.
  surname: Abebe
  fullname: Abebe, Ameha T.
  email: iamehat.abebe@samsung.com
  organization: Samsung Research,Seoul,Republic of Korea
– sequence: 4
  givenname: Chung G.
  surname: Kang
  fullname: Kang, Chung G.
  email: ccgkang@korea.ac.kr
  organization: Korea University,School of Electrical Engineering,Seoul,Republic of Korea
BookMark eNo1kM1Kw0AcxFfQg9a-geC-wMb9yiY5llSrUFGonsu_m4kspknYTZG-vQXraRjmN3OYG3bZDz0Yu1cyU0pWD4v3unZSGZ1pqU2mpHXSOXPB5lVRlSaXptROFdfsewmMvAPFPvRfYkcJDa-HrgspDL2gH4rgr4duCuKQEPkSE_x0ing7RL6K1E-ijQDfjBQTTtXmzI8d-MJ7pMQ3xzRhn27ZVUtdwvysM_b59PhRP4v12-qlXqxF0NJOIm-UQ9XuDJBbX6AknYNKY21lC9cYkNegxntrIVtS5ckoeF-4Mq-kbsyM3f3tBgDbMYY9xeP2_wPzCwzSWJM
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/APCC60132.2023.10460663
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350382617
EndPage 131
ExternalDocumentID 10460663
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i204t-5d16e9fb3ee54c7e8a25ea83449476d3eac2eadcc44e0fa18ead1ecc7685902d3
IEDL.DBID RIE
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001190732000022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed May 01 11:50:44 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i204t-5d16e9fb3ee54c7e8a25ea83449476d3eac2eadcc44e0fa18ead1ecc7685902d3
PageCount 6
ParticipantIDs ieee_primary_10460663
PublicationCentury 2000
PublicationDate 2023-Nov.-19
PublicationDateYYYYMMDD 2023-11-19
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-Nov.-19
  day: 19
PublicationDecade 2020
PublicationTitle 2023 28th Asia Pacific Conference on Communications (APCC)
PublicationTitleAbbrev APCC
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8662508
Snippet In grant-free sparse code multiple access (SCMA) systems, SCMA codebooks (CBs) are used for efficient grant-free random access. However, CB collisions can...
SourceID ieee
SourceType Publisher
StartPage 126
SubjectTerms codebook collision
Codes
Deep learning
Grant-free random access
multi-user detection
Multiuser detection
Receivers
Simulation
sparse code multiple access
Training
Training data
Title Deep learning-based Collision-aware Multi-user Detection for Grant-free Sparse Code Multiple Access Systems
URI https://ieeexplore.ieee.org/document/10460663
WOSCitedRecordID wos001190732000022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZoxcAEiCLe8sDqNg8_xyqlMFWVAKlb5ccFVaA0Cin8fWw3BTEwsCXRWZF8lj-f7777ELoVJuX-YGBImemMUM04kVYqUhqPFSKBlGoZxSbEbCYXCzXvyOqRCwMAsfgMhuEx5vLd2m7CVdko5CMDRPZQTwi-JWt1NVtpokbjeVHwkDsYBk3w4c76l25KhI3p4T9_eIQGPwQ8PP-GlmO0B9UJep0A1LiTeXghAX8cDoF_pIcT_akbwJFQS8LVA55AG-usKuwPpvjeg1JLygYAP9Y-mgU_1HX29RvgcVROxF0H8wF6nt49FQ-k00ogqyyhLWEu5aBKkwMwagVInTHQQURDUcFd7vfXzC8aaymFpNSp9C-pd5-PNkIDF5efon61ruAMYW619AMTaUxOmVLGcqeBl0xRZhPHz9EgzNSy3rbDWO4m6eKP75foIPgjEPhSdYX6bbOBa7RvP9rVe3MTnfgFCyagwQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA46BT2pOPG3OXjN1nZpmhzH5pw4x8AJu400eZWhdKV2-u-bFzvFgwdvbXmhkBfy5eW9732EXCdpKNzBIGVZpCPGdSyYNFKxLHVYkQQQci292EQyHsvZTE1qsrrnwgCALz6DFj76XL5dmhVelbUxH4kQuUm2UDqrpmvVVVthoNrdSa8nMHvQQlXw1tr-l3KKB47B3j9_uU-aPxQ8OvkGlwOyAfkheekDFLQWenhmiECWYujvCeJMf-gSqKfUMrx8oH2ofKVVTt3RlN46WKpYVgLQx8LFs-CG2tq-eAXa9dqJtO5h3iRPg5tpb8hqtQS2iAJesdiGAlSWdgBibhKQOopBo4yG4omwHbfDRm7ZGMM5BJkOpXsJnQNdvIEtXGzniDTyZQ7HhAqjpRsYyDTt8Fip1AirQWSx4rEJrDghTZypefHVEGO-nqTTP75fkZ3h9GE0H92N78_ILvoG6XyhOieNqlzBBdk279Xirbz0Dv0ElnqkCg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+28th+Asia+Pacific+Conference+on+Communications+%28APCC%29&rft.atitle=Deep+learning-based+Collision-aware+Multi-user+Detection+for+Grant-free+Sparse+Code+Multiple+Access+Systems&rft.au=Han%2C+Minsig&rft.au=Demissu%2C+Metasebia+G.&rft.au=Abebe%2C+Ameha+T.&rft.au=Kang%2C+Chung+G.&rft.date=2023-11-19&rft.pub=IEEE&rft.spage=126&rft.epage=131&rft_id=info:doi/10.1109%2FAPCC60132.2023.10460663&rft.externalDocID=10460663