Deep learning-based Collision-aware Multi-user Detection for Grant-free Sparse Code Multiple Access Systems
In grant-free sparse code multiple access (SCMA) systems, SCMA codebooks (CBs) are used for efficient grant-free random access. However, CB collisions can occur when multiple active users select the same CB, degrading the performance of multi-user detection (MUD) at the base station (BS). The existi...
Uloženo v:
| Vydáno v: | 2023 28th Asia Pacific Conference on Communications (APCC) s. 126 - 131 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
19.11.2023
|
| Témata: | |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In grant-free sparse code multiple access (SCMA) systems, SCMA codebooks (CBs) are used for efficient grant-free random access. However, CB collisions can occur when multiple active users select the same CB, degrading the performance of multi-user detection (MUD) at the base station (BS). The existing methods modify the factor graph on the message-passing algorithm (MPA) for each CB collision scenario, resulting in high computational complexity. In this paper, we aim to confirm that even in the presence of CB collisions, MUD performance can be ensured through a deep learning (DL)-based receiver and explore its limitations. We propose a single DL architecture for collision-aware MUD (CA-MUD) that can tolerate CB collisions, without resorting to the distinct MUD processes associated with individual collision scenarios. To facilitate the generation of training data for CA-MUD that comprehensively represents the grant-free SCMA scenario, we introduce a transceiver model that regulates the number of active CBs and sets the maximum tolerable CB collisions. Simulation results demonstrate that our proposed approach allows a single CA-MUD network to handle various CB collision scenarios, including 2-fold CB collision subject to a limited number of active users. |
|---|---|
| AbstractList | In grant-free sparse code multiple access (SCMA) systems, SCMA codebooks (CBs) are used for efficient grant-free random access. However, CB collisions can occur when multiple active users select the same CB, degrading the performance of multi-user detection (MUD) at the base station (BS). The existing methods modify the factor graph on the message-passing algorithm (MPA) for each CB collision scenario, resulting in high computational complexity. In this paper, we aim to confirm that even in the presence of CB collisions, MUD performance can be ensured through a deep learning (DL)-based receiver and explore its limitations. We propose a single DL architecture for collision-aware MUD (CA-MUD) that can tolerate CB collisions, without resorting to the distinct MUD processes associated with individual collision scenarios. To facilitate the generation of training data for CA-MUD that comprehensively represents the grant-free SCMA scenario, we introduce a transceiver model that regulates the number of active CBs and sets the maximum tolerable CB collisions. Simulation results demonstrate that our proposed approach allows a single CA-MUD network to handle various CB collision scenarios, including 2-fold CB collision subject to a limited number of active users. |
| Author | Kang, Chung G. Abebe, Ameha T. Han, Minsig Demissu, Metasebia G. |
| Author_xml | – sequence: 1 givenname: Minsig surname: Han fullname: Han, Minsig email: als4585@korea.ac.kr organization: Korea University,School of Electrical Engineering,Seoul,Republic of Korea – sequence: 2 givenname: Metasebia G. surname: Demissu fullname: Demissu, Metasebia G. email: met4@korea.ac.kr organization: Korea University,School of Electrical Engineering,Seoul,Republic of Korea – sequence: 3 givenname: Ameha T. surname: Abebe fullname: Abebe, Ameha T. email: iamehat.abebe@samsung.com organization: Samsung Research,Seoul,Republic of Korea – sequence: 4 givenname: Chung G. surname: Kang fullname: Kang, Chung G. email: ccgkang@korea.ac.kr organization: Korea University,School of Electrical Engineering,Seoul,Republic of Korea |
| BookMark | eNo1kM1Kw0AcxFfQg9a-geC-wMb9yiY5llSrUFGonsu_m4kspknYTZG-vQXraRjmN3OYG3bZDz0Yu1cyU0pWD4v3unZSGZ1pqU2mpHXSOXPB5lVRlSaXptROFdfsewmMvAPFPvRfYkcJDa-HrgspDL2gH4rgr4duCuKQEPkSE_x0ing7RL6K1E-ijQDfjBQTTtXmzI8d-MJ7pMQ3xzRhn27ZVUtdwvysM_b59PhRP4v12-qlXqxF0NJOIm-UQ9XuDJBbX6AknYNKY21lC9cYkNegxntrIVtS5ckoeF-4Mq-kbsyM3f3tBgDbMYY9xeP2_wPzCwzSWJM |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/APCC60132.2023.10460663 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9798350382617 |
| EndPage | 131 |
| ExternalDocumentID | 10460663 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i204t-5d16e9fb3ee54c7e8a25ea83449476d3eac2eadcc44e0fa18ead1ecc7685902d3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001190732000022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed May 01 11:50:44 EDT 2024 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i204t-5d16e9fb3ee54c7e8a25ea83449476d3eac2eadcc44e0fa18ead1ecc7685902d3 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_10460663 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-Nov.-19 |
| PublicationDateYYYYMMDD | 2023-11-19 |
| PublicationDate_xml | – month: 11 year: 2023 text: 2023-Nov.-19 day: 19 |
| PublicationDecade | 2020 |
| PublicationTitle | 2023 28th Asia Pacific Conference on Communications (APCC) |
| PublicationTitleAbbrev | APCC |
| PublicationYear | 2023 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.8662508 |
| Snippet | In grant-free sparse code multiple access (SCMA) systems, SCMA codebooks (CBs) are used for efficient grant-free random access. However, CB collisions can... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 126 |
| SubjectTerms | codebook collision Codes Deep learning Grant-free random access multi-user detection Multiuser detection Receivers Simulation sparse code multiple access Training Training data |
| Title | Deep learning-based Collision-aware Multi-user Detection for Grant-free Sparse Code Multiple Access Systems |
| URI | https://ieeexplore.ieee.org/document/10460663 |
| WOSCitedRecordID | wos001190732000022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZoxcAEiCLe8sDqNg8_xyqlMFWVAKlb5ccFVaA0Cin8fWw3BTEwsCXRWZF8lj-f7777ELoVJuX-YGBImemMUM04kVYqUhqPFSKBlGoZxSbEbCYXCzXvyOqRCwMAsfgMhuEx5vLd2m7CVdko5CMDRPZQTwi-JWt1NVtpokbjeVHwkDsYBk3w4c76l25KhI3p4T9_eIQGPwQ8PP-GlmO0B9UJep0A1LiTeXghAX8cDoF_pIcT_akbwJFQS8LVA55AG-usKuwPpvjeg1JLygYAP9Y-mgU_1HX29RvgcVROxF0H8wF6nt49FQ-k00ogqyyhLWEu5aBKkwMwagVInTHQQURDUcFd7vfXzC8aaymFpNSp9C-pd5-PNkIDF5efon61ruAMYW619AMTaUxOmVLGcqeBl0xRZhPHz9EgzNSy3rbDWO4m6eKP75foIPgjEPhSdYX6bbOBa7RvP9rVe3MTnfgFCyagwQ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA46BT2pOPG3OXjN1nZpmhzH5pw4x8AJu400eZWhdKV2-u-bFzvFgwdvbXmhkBfy5eW9732EXCdpKNzBIGVZpCPGdSyYNFKxLHVYkQQQci292EQyHsvZTE1qsrrnwgCALz6DFj76XL5dmhVelbUxH4kQuUm2UDqrpmvVVVthoNrdSa8nMHvQQlXw1tr-l3KKB47B3j9_uU-aPxQ8OvkGlwOyAfkheekDFLQWenhmiECWYujvCeJMf-gSqKfUMrx8oH2ofKVVTt3RlN46WKpYVgLQx8LFs-CG2tq-eAXa9dqJtO5h3iRPg5tpb8hqtQS2iAJesdiGAlSWdgBibhKQOopBo4yG4omwHbfDRm7ZGMM5BJkOpXsJnQNdvIEtXGzniDTyZQ7HhAqjpRsYyDTt8Fip1AirQWSx4rEJrDghTZypefHVEGO-nqTTP75fkZ3h9GE0H92N78_ILvoG6XyhOieNqlzBBdk279Xirbz0Dv0ElnqkCg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+28th+Asia+Pacific+Conference+on+Communications+%28APCC%29&rft.atitle=Deep+learning-based+Collision-aware+Multi-user+Detection+for+Grant-free+Sparse+Code+Multiple+Access+Systems&rft.au=Han%2C+Minsig&rft.au=Demissu%2C+Metasebia+G.&rft.au=Abebe%2C+Ameha+T.&rft.au=Kang%2C+Chung+G.&rft.date=2023-11-19&rft.pub=IEEE&rft.spage=126&rft.epage=131&rft_id=info:doi/10.1109%2FAPCC60132.2023.10460663&rft.externalDocID=10460663 |