4D Automotive Radar Exploiting Sparse Array Optimization and Compressive Sensing
Automotive radar systems require high resolution in four dimensions: range, Doppler, elevation and azimuth. The angular resolution of an automotive radar are determined by the antenna array aperture. Two-dimensional (2D) antenna arrays are necessary for angle estimation in both elevation and azimuth...
Uloženo v:
| Vydáno v: | Conference record - Asilomar Conference on Signals, Systems, & Computers s. 01 - 05 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
29.10.2023
|
| Témata: | |
| ISSN: | 2576-2303 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Automotive radar systems require high resolution in four dimensions: range, Doppler, elevation and azimuth. The angular resolution of an automotive radar are determined by the antenna array aperture. Two-dimensional (2D) antenna arrays are necessary for angle estimation in both elevation and azimuth for automotive radar systems to enable drive-over and drive-under functions. Sparse arrays offer advantages such as reduced mutual coupling and lower hardware costs. The sparse array configurations like coprime and nested arrays, which require a large number of array snapshots, may not be suitable for highly dynamic automotive scenarios. Multiple-input and multiple-output (MIMO) radars are widely adopted in automotive radar applications due to their ability to synthesize a large virtual array. In this paper, our objective is to optimize the geometry of 2D MIMO sparse arrays while considering fabrication constraints, i.e., minimal spacing between antennas. This optimization aims to minimize the peak sidelobe level and half-power beam width (HPBW), thus enabling high-resolution imaging with single snapshot. Angle finding is accomplished through a 2D compressive sensing approach. Through extensive numerical experiments, we demonstrate that the proposed workflow offers a practical solution for 2D MIMO sparse arrays, ensuring high angular resolution in automotive radar systems. |
|---|---|
| AbstractList | Automotive radar systems require high resolution in four dimensions: range, Doppler, elevation and azimuth. The angular resolution of an automotive radar are determined by the antenna array aperture. Two-dimensional (2D) antenna arrays are necessary for angle estimation in both elevation and azimuth for automotive radar systems to enable drive-over and drive-under functions. Sparse arrays offer advantages such as reduced mutual coupling and lower hardware costs. The sparse array configurations like coprime and nested arrays, which require a large number of array snapshots, may not be suitable for highly dynamic automotive scenarios. Multiple-input and multiple-output (MIMO) radars are widely adopted in automotive radar applications due to their ability to synthesize a large virtual array. In this paper, our objective is to optimize the geometry of 2D MIMO sparse arrays while considering fabrication constraints, i.e., minimal spacing between antennas. This optimization aims to minimize the peak sidelobe level and half-power beam width (HPBW), thus enabling high-resolution imaging with single snapshot. Angle finding is accomplished through a 2D compressive sensing approach. Through extensive numerical experiments, we demonstrate that the proposed workflow offers a practical solution for 2D MIMO sparse arrays, ensuring high angular resolution in automotive radar systems. |
| Author | Abatzoglou, Theagenis Zheng, Ruxin Sun, Shunqiao Markel, Matt Kuo, Wesley |
| Author_xml | – sequence: 1 givenname: Ruxin surname: Zheng fullname: Zheng, Ruxin organization: The University of Alabama,Department of Electrical and Computer Engineering,Tuscaloosa,AL,35487 – sequence: 2 givenname: Shunqiao surname: Sun fullname: Sun, Shunqiao organization: The University of Alabama,Department of Electrical and Computer Engineering,Tuscaloosa,AL,35487 – sequence: 3 givenname: Wesley surname: Kuo fullname: Kuo, Wesley organization: Spartan Radar,Los Alamitos,CA,90720 – sequence: 4 givenname: Theagenis surname: Abatzoglou fullname: Abatzoglou, Theagenis organization: Spartan Radar,Los Alamitos,CA,90720 – sequence: 5 givenname: Matt surname: Markel fullname: Markel, Matt organization: Spartan Radar,Los Alamitos,CA,90720 |
| BookMark | eNo1kMtOwzAUBQ0Cibb0D1hYYp1w_UriZRVSqFQRRGFdOck1MmoesgOifD1BwGo2Z2Zx5uSs6zsk5JpBzBjom01RFHn5sFZacRlz4CJmINMkS_kJWepUZ0KB4CqV8pTMJiYRFyAuyDyEN4BJyPiMPMpbunof-7Yf3QfSJ9MYT4vP4dC70XWvdDcYH5CuvDdHWg6ja92XGV3fUdM1NO_bwWMIP-oOuzAZl-TcmkPA5R8X5GVdPOf30ba82-SrbeQ4yDFSlZK1MMA1gK0zTEArhVxjUzeAtWDIEFGiANOwmjfKpmirGmSFWWWtFQty9dt1024_eNcaf9z_PyC-AaYMVUQ |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/IEEECONF59524.2023.10476872 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library Online IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISBN | 9798350325744 |
| EISSN | 2576-2303 |
| EndPage | 05 |
| ExternalDocumentID | 10476872 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ABLEC ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP IPLJI M43 OCL RIE RIL RIO |
| ID | FETCH-LOGICAL-i204t-5b54c3a02900fc8e60955e29edcd0ec31e1eee4e30ad1c2d5f7efbc04be8bfff3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001207755100216&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:09:41 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i204t-5b54c3a02900fc8e60955e29edcd0ec31e1eee4e30ad1c2d5f7efbc04be8bfff3 |
| PageCount | 5 |
| ParticipantIDs | ieee_primary_10476872 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-Oct.-29 |
| PublicationDateYYYYMMDD | 2023-10-29 |
| PublicationDate_xml | – month: 10 year: 2023 text: 2023-Oct.-29 day: 29 |
| PublicationDecade | 2020 |
| PublicationTitle | Conference record - Asilomar Conference on Signals, Systems, & Computers |
| PublicationTitleAbbrev | IEEECONF |
| PublicationYear | 2023 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0020282 |
| Score | 2.2503335 |
| Snippet | Automotive radar systems require high resolution in four dimensions: range, Doppler, elevation and azimuth. The angular resolution of an automotive radar are... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 01 |
| SubjectTerms | Automotive radar Constrained optimization Doppler radar Fabrication Geometry Optimization Radar Radar antennas Radar imaging Sparse array optimization |
| Title | 4D Automotive Radar Exploiting Sparse Array Optimization and Compressive Sensing |
| URI | https://ieeexplore.ieee.org/document/10476872 |
| WOSCitedRecordID | wos001207755100216&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aRPTiq-KbgF63TbOPbI6lWjxIW6xCbyWbTKQHt2XdLfjvzaTbqgcP3kJIIA-YyUy-7xtC7kKuktgoHhjAbJVWIpAZE4FNnftJVCKE9VVLnsRgkE4mclST1T0XBgA8-Axa2PR_-WauK0yVtVFWIEmFs7jbQogVWWsTXWHwsEtuaxHNNsZKveGgH8uYY-6Eh6319F-FVLwf6R_8cwWHpPnNyKOjja85IluQH5P9H2KCJ2QU3dNuVXp03RLoszKqoB5iN0NoMx0vXAwLtFsU6pMOnaV4rymYVOWGol3wkFg3dYyg9vytSV77Dy-9x6CulxDMOIvKIM7iSIeKccmY1SmgllwMXILRhoEOO9BxG4ogZMp0NDexFWAzzaIM0sxaG56SRj7P4YzQxPDQ-e4M3GspcoOlYqk2CYqzpVJZfU6aeDjTxUoSY7o-l4s_-i_JHl4BGn0ur0ijLCq4Jjt6Wc4-iht_kV8QW6BH |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELVQQSwXtiJ2LME1rePESXysClURJa1okXqrHHuMeiCtQlqJv8d2F-DAgVtkxVZiS_Myk_feIHQXUBExJainwFarpIg9npHY04mBn0hEcaxd15JOnKbJcMh7S7G608IAgCOfQc1eun_5aiJntlRWt7YCURKbiLvJwpD6C7nWOr-y6cM2ul3aaNZtttTspi3GGbXVExrUVgv8aqXikKS1_89nOEDVb00e7q3R5hBtQH6E9n7YCR6jXniPG7PS8evmgF-EEgV2JLuxJTfj_tRksYAbRSE-cdfEivelCBOLXGEbGRwp1kztW1p7_lZFr62HQbPtLTsmeGNKwtJjGQtlIAjlhGiZgHWTY0A5KKkIyMAH37xQCAERypdUMR2DziQJM0gyrXVwgir5JIdThCNFA4PeGZjvpdDczAVJpIqsPVvChZZnqGo3ZzRdmGKMVvty_sf4DdppD547o85j-nSBdu1xWAig_BJVymIGV2hLzsvxR3HtDvULlFKjjg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Conference+record+-+Asilomar+Conference+on+Signals%2C+Systems%2C+%26+Computers&rft.atitle=4D+Automotive+Radar+Exploiting+Sparse+Array+Optimization+and+Compressive+Sensing&rft.au=Zheng%2C+Ruxin&rft.au=Sun%2C+Shunqiao&rft.au=Kuo%2C+Wesley&rft.au=Abatzoglou%2C+Theagenis&rft.date=2023-10-29&rft.pub=IEEE&rft.eissn=2576-2303&rft.spage=01&rft.epage=05&rft_id=info:doi/10.1109%2FIEEECONF59524.2023.10476872&rft.externalDocID=10476872 |