4D Automotive Radar Exploiting Sparse Array Optimization and Compressive Sensing

Automotive radar systems require high resolution in four dimensions: range, Doppler, elevation and azimuth. The angular resolution of an automotive radar are determined by the antenna array aperture. Two-dimensional (2D) antenna arrays are necessary for angle estimation in both elevation and azimuth...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Conference record - Asilomar Conference on Signals, Systems, & Computers s. 01 - 05
Hlavní autoři: Zheng, Ruxin, Sun, Shunqiao, Kuo, Wesley, Abatzoglou, Theagenis, Markel, Matt
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 29.10.2023
Témata:
ISSN:2576-2303
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Automotive radar systems require high resolution in four dimensions: range, Doppler, elevation and azimuth. The angular resolution of an automotive radar are determined by the antenna array aperture. Two-dimensional (2D) antenna arrays are necessary for angle estimation in both elevation and azimuth for automotive radar systems to enable drive-over and drive-under functions. Sparse arrays offer advantages such as reduced mutual coupling and lower hardware costs. The sparse array configurations like coprime and nested arrays, which require a large number of array snapshots, may not be suitable for highly dynamic automotive scenarios. Multiple-input and multiple-output (MIMO) radars are widely adopted in automotive radar applications due to their ability to synthesize a large virtual array. In this paper, our objective is to optimize the geometry of 2D MIMO sparse arrays while considering fabrication constraints, i.e., minimal spacing between antennas. This optimization aims to minimize the peak sidelobe level and half-power beam width (HPBW), thus enabling high-resolution imaging with single snapshot. Angle finding is accomplished through a 2D compressive sensing approach. Through extensive numerical experiments, we demonstrate that the proposed workflow offers a practical solution for 2D MIMO sparse arrays, ensuring high angular resolution in automotive radar systems.
AbstractList Automotive radar systems require high resolution in four dimensions: range, Doppler, elevation and azimuth. The angular resolution of an automotive radar are determined by the antenna array aperture. Two-dimensional (2D) antenna arrays are necessary for angle estimation in both elevation and azimuth for automotive radar systems to enable drive-over and drive-under functions. Sparse arrays offer advantages such as reduced mutual coupling and lower hardware costs. The sparse array configurations like coprime and nested arrays, which require a large number of array snapshots, may not be suitable for highly dynamic automotive scenarios. Multiple-input and multiple-output (MIMO) radars are widely adopted in automotive radar applications due to their ability to synthesize a large virtual array. In this paper, our objective is to optimize the geometry of 2D MIMO sparse arrays while considering fabrication constraints, i.e., minimal spacing between antennas. This optimization aims to minimize the peak sidelobe level and half-power beam width (HPBW), thus enabling high-resolution imaging with single snapshot. Angle finding is accomplished through a 2D compressive sensing approach. Through extensive numerical experiments, we demonstrate that the proposed workflow offers a practical solution for 2D MIMO sparse arrays, ensuring high angular resolution in automotive radar systems.
Author Abatzoglou, Theagenis
Zheng, Ruxin
Sun, Shunqiao
Markel, Matt
Kuo, Wesley
Author_xml – sequence: 1
  givenname: Ruxin
  surname: Zheng
  fullname: Zheng, Ruxin
  organization: The University of Alabama,Department of Electrical and Computer Engineering,Tuscaloosa,AL,35487
– sequence: 2
  givenname: Shunqiao
  surname: Sun
  fullname: Sun, Shunqiao
  organization: The University of Alabama,Department of Electrical and Computer Engineering,Tuscaloosa,AL,35487
– sequence: 3
  givenname: Wesley
  surname: Kuo
  fullname: Kuo, Wesley
  organization: Spartan Radar,Los Alamitos,CA,90720
– sequence: 4
  givenname: Theagenis
  surname: Abatzoglou
  fullname: Abatzoglou, Theagenis
  organization: Spartan Radar,Los Alamitos,CA,90720
– sequence: 5
  givenname: Matt
  surname: Markel
  fullname: Markel, Matt
  organization: Spartan Radar,Los Alamitos,CA,90720
BookMark eNo1kMtOwzAUBQ0Cibb0D1hYYp1w_UriZRVSqFQRRGFdOck1MmoesgOifD1BwGo2Z2Zx5uSs6zsk5JpBzBjom01RFHn5sFZacRlz4CJmINMkS_kJWepUZ0KB4CqV8pTMJiYRFyAuyDyEN4BJyPiMPMpbunof-7Yf3QfSJ9MYT4vP4dC70XWvdDcYH5CuvDdHWg6ja92XGV3fUdM1NO_bwWMIP-oOuzAZl-TcmkPA5R8X5GVdPOf30ba82-SrbeQ4yDFSlZK1MMA1gK0zTEArhVxjUzeAtWDIEFGiANOwmjfKpmirGmSFWWWtFQty9dt1024_eNcaf9z_PyC-AaYMVUQ
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/IEEECONF59524.2023.10476872
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library Online
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9798350325744
EISSN 2576-2303
EndPage 05
ExternalDocumentID 10476872
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
M43
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i204t-5b54c3a02900fc8e60955e29edcd0ec31e1eee4e30ad1c2d5f7efbc04be8bfff3
IEDL.DBID RIE
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001207755100216&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:09:41 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i204t-5b54c3a02900fc8e60955e29edcd0ec31e1eee4e30ad1c2d5f7efbc04be8bfff3
PageCount 5
ParticipantIDs ieee_primary_10476872
PublicationCentury 2000
PublicationDate 2023-Oct.-29
PublicationDateYYYYMMDD 2023-10-29
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-Oct.-29
  day: 29
PublicationDecade 2020
PublicationTitle Conference record - Asilomar Conference on Signals, Systems, & Computers
PublicationTitleAbbrev IEEECONF
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0020282
Score 2.2503335
Snippet Automotive radar systems require high resolution in four dimensions: range, Doppler, elevation and azimuth. The angular resolution of an automotive radar are...
SourceID ieee
SourceType Publisher
StartPage 01
SubjectTerms Automotive radar
Constrained optimization
Doppler radar
Fabrication
Geometry
Optimization
Radar
Radar antennas
Radar imaging
Sparse array optimization
Title 4D Automotive Radar Exploiting Sparse Array Optimization and Compressive Sensing
URI https://ieeexplore.ieee.org/document/10476872
WOSCitedRecordID wos001207755100216&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aRPTiq-KbgF63TbOPbI6lWjxIW6xCbyWbTKQHt2XdLfjvzaTbqgcP3kJIIA-YyUy-7xtC7kKuktgoHhjAbJVWIpAZE4FNnftJVCKE9VVLnsRgkE4mclST1T0XBgA8-Axa2PR_-WauK0yVtVFWIEmFs7jbQogVWWsTXWHwsEtuaxHNNsZKveGgH8uYY-6Eh6319F-FVLwf6R_8cwWHpPnNyKOjja85IluQH5P9H2KCJ2QU3dNuVXp03RLoszKqoB5iN0NoMx0vXAwLtFsU6pMOnaV4rymYVOWGol3wkFg3dYyg9vytSV77Dy-9x6CulxDMOIvKIM7iSIeKccmY1SmgllwMXILRhoEOO9BxG4ogZMp0NDexFWAzzaIM0sxaG56SRj7P4YzQxPDQ-e4M3GspcoOlYqk2CYqzpVJZfU6aeDjTxUoSY7o-l4s_-i_JHl4BGn0ur0ijLCq4Jjt6Wc4-iht_kV8QW6BH
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELVQQSwXtiJ2LME1rePESXysClURJa1okXqrHHuMeiCtQlqJv8d2F-DAgVtkxVZiS_Myk_feIHQXUBExJainwFarpIg9npHY04mBn0hEcaxd15JOnKbJcMh7S7G608IAgCOfQc1eun_5aiJntlRWt7YCURKbiLvJwpD6C7nWOr-y6cM2ul3aaNZtttTspi3GGbXVExrUVgv8aqXikKS1_89nOEDVb00e7q3R5hBtQH6E9n7YCR6jXniPG7PS8evmgF-EEgV2JLuxJTfj_tRksYAbRSE-cdfEivelCBOLXGEbGRwp1kztW1p7_lZFr62HQbPtLTsmeGNKwtJjGQtlIAjlhGiZgHWTY0A5KKkIyMAH37xQCAERypdUMR2DziQJM0gyrXVwgir5JIdThCNFA4PeGZjvpdDczAVJpIqsPVvChZZnqGo3ZzRdmGKMVvty_sf4DdppD547o85j-nSBdu1xWAig_BJVymIGV2hLzsvxR3HtDvULlFKjjg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Conference+record+-+Asilomar+Conference+on+Signals%2C+Systems%2C+%26+Computers&rft.atitle=4D+Automotive+Radar+Exploiting+Sparse+Array+Optimization+and+Compressive+Sensing&rft.au=Zheng%2C+Ruxin&rft.au=Sun%2C+Shunqiao&rft.au=Kuo%2C+Wesley&rft.au=Abatzoglou%2C+Theagenis&rft.date=2023-10-29&rft.pub=IEEE&rft.eissn=2576-2303&rft.spage=01&rft.epage=05&rft_id=info:doi/10.1109%2FIEEECONF59524.2023.10476872&rft.externalDocID=10476872