Hermes: Fast Semi-Asynchronous Federated Learning in LEO Constellations
Recent advances in space technology have prompted the emergence of numerous Low Earth Orbit (LEO) satellites, producing mega-constellations that can pro-vide global network coverage and collect massive distributed data, bringing new opportunities for intelligence applications to remote areas. To ach...
Uloženo v:
| Vydáno v: | IEEE Wireless Communications and Networking Conference : [proceedings] : WCNC s. 1 - 6 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
21.04.2024
|
| Témata: | |
| ISSN: | 1558-2612 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Recent advances in space technology have prompted the emergence of numerous Low Earth Orbit (LEO) satellites, producing mega-constellations that can pro-vide global network coverage and collect massive distributed data, bringing new opportunities for intelligence applications to remote areas. To achieve such goals, Federated Learning (FL) is a promising solution to train the global model over LEO satellites and ground station networks while reducing the high communication cost caused by data exchanging. However, the widely used synchronous FL may face intol-erable waiting time due to the intermittent connectivity. In addition, existing asynchronous FL suffers from model staleness attributed to asynchronous training, which may decrease the performance of the global model. To this end, we propose a novel semi-asynchronous federated learning frame-work in LEO constellations, namely Hermes, that includes a latency-aware model delivery mechanism and an adaptive semi-asynchronous aggregation algorithm to improve the convergence rate and generality of the global model. Our simulation results show that Hermes outperforms existing LEO-based FL methods across various constellation scales, achieving higher model accuracy with average speedups of 3.29x and 7.26x for MNIST and EMNIST, respectively. |
|---|---|
| AbstractList | Recent advances in space technology have prompted the emergence of numerous Low Earth Orbit (LEO) satellites, producing mega-constellations that can pro-vide global network coverage and collect massive distributed data, bringing new opportunities for intelligence applications to remote areas. To achieve such goals, Federated Learning (FL) is a promising solution to train the global model over LEO satellites and ground station networks while reducing the high communication cost caused by data exchanging. However, the widely used synchronous FL may face intol-erable waiting time due to the intermittent connectivity. In addition, existing asynchronous FL suffers from model staleness attributed to asynchronous training, which may decrease the performance of the global model. To this end, we propose a novel semi-asynchronous federated learning frame-work in LEO constellations, namely Hermes, that includes a latency-aware model delivery mechanism and an adaptive semi-asynchronous aggregation algorithm to improve the convergence rate and generality of the global model. Our simulation results show that Hermes outperforms existing LEO-based FL methods across various constellation scales, achieving higher model accuracy with average speedups of 3.29x and 7.26x for MNIST and EMNIST, respectively. |
| Author | Du, Bowen Zhao, Jiejie Chen, Yan Liu, Jun Jiang, Guanjun Wang, Haiquan |
| Author_xml | – sequence: 1 givenname: Yan surname: Chen fullname: Chen, Yan email: juneliu@tsinghua.edu.cn organization: School of Software, Beihang University,Beijing,China,100191 – sequence: 2 givenname: Jun surname: Liu fullname: Liu, Jun email: zhaojiejie@zgclab.edu.cn organization: Institute for Network Sciences and Cyberspace, Tsinghua University,Beijing,China,100084 – sequence: 3 givenname: Jiejie surname: Zhao fullname: Zhao, Jiejie email: chenyan2022@buaa.edu.cn organization: Zhongguancun Laboratory – sequence: 4 givenname: Guanjun surname: Jiang fullname: Jiang, Guanjun email: whq@buaa.edu.cn organization: School of Software, Beihang University,Beijing,China,100191 – sequence: 5 givenname: Haiquan surname: Wang fullname: Wang, Haiquan email: 1824055481@buaa.edu.cn organization: School of Software, Beihang University,Beijing,China,100191 – sequence: 6 givenname: Bowen surname: Du fullname: Du, Bowen email: dubowen@buaa.edu.cn organization: Zhongguancun Laboratory |
| BookMark | eNo1j81Kw0AYAFdRsK19A8F9gcRvf7PxVkLTCsEeVDyWze4XXUk2ko2Hvr2Cepo5DcySXMQxIiG3DHLGoLx7rR4rVXANOQcucwaqYEyWZ2RdFqURCgQIZfg5WTClTMY141dkmdIHAAcl5YLs9jgNmO5pbdNMn3AI2Sadonufxjh-JVqjx8nO6GmDdoohvtEQabM90GqMaca-t3P4sWty2dk-4fqPK_JSb5-rfdYcdg_VpskCBzlnUjshCsOxdSV0rUHftc5KbYVQuvVcgWkdZ94CaOlBoUbmPNemK1pprBMrcvPbDYh4_JzCYKfT8X9cfAOaVE9P |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/WCNC57260.2024.10571149 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISBN | 9798350303582 |
| EISSN | 1558-2612 |
| EndPage | 6 |
| ExternalDocumentID | 10571149 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62272266,62132009 funderid: 10.13039/501100001809 |
| GroupedDBID | 29I 6IE 6IF 6IH 6IK 6IL 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI M43 OCL RIE RIL |
| ID | FETCH-LOGICAL-i204t-46c33782ebc90fb8edfbca46a3356bd2508bc21da0064d05e6e1cd268f7b48ac3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001268569303143&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:04:52 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i204t-46c33782ebc90fb8edfbca46a3356bd2508bc21da0064d05e6e1cd268f7b48ac3 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_10571149 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-April-21 |
| PublicationDateYYYYMMDD | 2024-04-21 |
| PublicationDate_xml | – month: 04 year: 2024 text: 2024-April-21 day: 21 |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE Wireless Communications and Networking Conference : [proceedings] : WCNC |
| PublicationTitleAbbrev | WCNC |
| PublicationYear | 2024 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0020544 |
| Score | 2.2535985 |
| Snippet | Recent advances in space technology have prompted the emergence of numerous Low Earth Orbit (LEO) satellites, producing mega-constellations that can pro-vide... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | Accuracy Adaptation models Federated learning Satellites Schedules Simulation Training |
| Title | Hermes: Fast Semi-Asynchronous Federated Learning in LEO Constellations |
| URI | https://ieeexplore.ieee.org/document/10571149 |
| WOSCitedRecordID | wos001268569303143&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZoxQALryLe8sDqNnEcO2ZDVUOHqlTi1a3y44IykKImReLfY6dpgYGBzYpkRbpTct939vcdQtfSuC8MQkMMkxlhsaREWRo6zmNtwJMsFrVu7XkkxuNkOpWTRqxea2EAoL58Bl2_rM_y7dwsfaus52fSOvwuW6glBF-JtTbsymEP1lzgCgPZe-mP-7FwaN1xQMq6662_hqjUNSTd--fb91HnW42HJ5s6c4C2oDhEuz-MBI_Q3dD9YKG8wakqK_wAbzm5LT8L451vHbXHqbeMcKjS4sZP9RXnBR4N7rEf2OmFJKvGXQc9pYPH_pA0IxJITgNWEcZNFLkiD9rIINMJ2EwbxbiKophr6_BNog0NrfLQwwYxcJcXS10ShGaJMtExahfzAk4QBqZlJkFyJZQv29IRtyig2gqjEqH4Ker4mMzeVy4Ys3U4zv54fo52fOT9yQsNL1C7WizhEm2bjyovF1d17r4A4IqaEA |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV27TsMwFL2CggQsvIp444E1beI4D7OhqiGIECpRoFvlV1AGUtSkSPw9dpoWGBjYLEuWJV_Z9xzb51yASyr0DlOOsAShmUU8ii0msaM5j5S2H2ZeUOvWnpMgTcPRiA4asXqthVFK1Z_PVMc067d8OREzc1XWNTVpNX6nq7DmEYLtuVxrya80-iDNFy7Hpt2XXtrzAo3XNQvEpLMY_KuMSp1Fou1_zr8D7W89HhosM80urKhiD7Z-WAnuw02sj1hVXqGIlRV6VG-5dV1-FsJ432pyjyJjGqFxpUSNo-oryguU9B-QKdlppCTzq7s2PEX9YS-2miIJVo5tUlnEF66r07zigtoZD5XMuGDEZ67r-VxqhBNygR3JDPiQtqd8HRmJdRgCTkIm3ANoFZNCHQJShNOMKuqzgJnETTV1c23MZSBYGDD_CNpmTcbvcx-M8WI5jv_ov4CNeHifjJPb9O4ENk0UzDsMdk6hVU1n6gzWxUeVl9PzOo5fFOmdVw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE+Wireless+Communications+and+Networking+Conference+%3A+%5Bproceedings%5D+%3A+WCNC&rft.atitle=Hermes%3A+Fast+Semi-Asynchronous+Federated+Learning+in+LEO+Constellations&rft.au=Chen%2C+Yan&rft.au=Liu%2C+Jun&rft.au=Zhao%2C+Jiejie&rft.au=Jiang%2C+Guanjun&rft.date=2024-04-21&rft.pub=IEEE&rft.eissn=1558-2612&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FWCNC57260.2024.10571149&rft.externalDocID=10571149 |