New Lower Bounds for Adaptive Tolerant Junta Testing
We prove a k^{-\Omega\left(\log \left(\varepsilon_{2}-\varepsilon_{1}\right)\right)} lower bound for adap- tively testing whether a Boolean function is \varepsilon_{1}-close to or \varepsilon_{2}- far from k-juntas. Our results provide the first superpolynomial separation between tolerant and non-to...
Uložené v:
| Vydané v: | Proceedings / annual Symposium on Foundations of Computer Science s. 1778 - 1786 |
|---|---|
| Hlavní autori: | , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
06.11.2023
|
| Predmet: | |
| ISSN: | 2575-8454 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | We prove a k^{-\Omega\left(\log \left(\varepsilon_{2}-\varepsilon_{1}\right)\right)} lower bound for adap- tively testing whether a Boolean function is \varepsilon_{1}-close to or \varepsilon_{2}- far from k-juntas. Our results provide the first superpolynomial separation between tolerant and non-tolerant testing for a natural property of boolean functions under the adaptive setting. Furthermore, our techniques generalize to show that adaptively testing whether a function is \varepsilon_{1}-close to a k-junta or \varepsilon_{2}-far from (k+o(k))-juntas cannot be done with poly (k,\left(\varepsilon_{2}-\varepsilon_{1}\right)^{-1}) queries. This is in contrast to an algorithm by Iyer, Tal and Whitmeyer [CCC 2021] which uses poly (k,\left(\varepsilon_{2}-\varepsilon_{1}\right)^{-1}) queries to test whether a function is \varepsilon_{1}-close to a k-junta or \varepsilon_{2}-far from O(k /\left(\varepsilon_{2}-\varepsilon_{1}\right)^{2})-juntas |
|---|---|
| ISSN: | 2575-8454 |
| DOI: | 10.1109/FOCS57990.2023.00108 |