New Lower Bounds for Adaptive Tolerant Junta Testing

We prove a k^{-\Omega\left(\log \left(\varepsilon_{2}-\varepsilon_{1}\right)\right)} lower bound for adap- tively testing whether a Boolean function is \varepsilon_{1}-close to or \varepsilon_{2}- far from k-juntas. Our results provide the first superpolynomial separation between tolerant and non-to...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings / annual Symposium on Foundations of Computer Science pp. 1778 - 1786
Main Authors: Chen, Xi, Patel, Shyamal
Format: Conference Proceeding
Language:English
Published: IEEE 06.11.2023
Subjects:
ISSN:2575-8454
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We prove a k^{-\Omega\left(\log \left(\varepsilon_{2}-\varepsilon_{1}\right)\right)} lower bound for adap- tively testing whether a Boolean function is \varepsilon_{1}-close to or \varepsilon_{2}- far from k-juntas. Our results provide the first superpolynomial separation between tolerant and non-tolerant testing for a natural property of boolean functions under the adaptive setting. Furthermore, our techniques generalize to show that adaptively testing whether a function is \varepsilon_{1}-close to a k-junta or \varepsilon_{2}-far from (k+o(k))-juntas cannot be done with poly (k,\left(\varepsilon_{2}-\varepsilon_{1}\right)^{-1}) queries. This is in contrast to an algorithm by Iyer, Tal and Whitmeyer [CCC 2021] which uses poly (k,\left(\varepsilon_{2}-\varepsilon_{1}\right)^{-1}) queries to test whether a function is \varepsilon_{1}-close to a k-junta or \varepsilon_{2}-far from O(k /\left(\varepsilon_{2}-\varepsilon_{1}\right)^{2})-juntas
AbstractList We prove a k^{-\Omega\left(\log \left(\varepsilon_{2}-\varepsilon_{1}\right)\right)} lower bound for adap- tively testing whether a Boolean function is \varepsilon_{1}-close to or \varepsilon_{2}- far from k-juntas. Our results provide the first superpolynomial separation between tolerant and non-tolerant testing for a natural property of boolean functions under the adaptive setting. Furthermore, our techniques generalize to show that adaptively testing whether a function is \varepsilon_{1}-close to a k-junta or \varepsilon_{2}-far from (k+o(k))-juntas cannot be done with poly (k,\left(\varepsilon_{2}-\varepsilon_{1}\right)^{-1}) queries. This is in contrast to an algorithm by Iyer, Tal and Whitmeyer [CCC 2021] which uses poly (k,\left(\varepsilon_{2}-\varepsilon_{1}\right)^{-1}) queries to test whether a function is \varepsilon_{1}-close to a k-junta or \varepsilon_{2}-far from O(k /\left(\varepsilon_{2}-\varepsilon_{1}\right)^{2})-juntas
Author Chen, Xi
Patel, Shyamal
Author_xml – sequence: 1
  givenname: Xi
  surname: Chen
  fullname: Chen, Xi
  email: xichen@cs.columbia.edu
  organization: Columbia University,Department of Computer Science,New York,NY,USA
– sequence: 2
  givenname: Shyamal
  surname: Patel
  fullname: Patel, Shyamal
  email: shyamalpatelb@gmail.com
  organization: Columbia University,Department of Computer Science,New York,NY,USA
BookMark eNotzs1OwkAUQOHRaCIgb8BiXqD13vlp5y6xEdQ0sKCuyZTeMTU4JW2R-Paa6OrsvpypuIldZCEWCCki0MNqW-xsTgSpAqVTAAR3JeaUk9MWNDoy5lpMlM1t4ow1d2I6DB8ABiyYiTAbvsiyu3AvH7tzbAYZul4uG38a2y-WVXfk3sdRvp7j6GXFw9jG93txG_xx4Pl_Z-Jt9VQVz0m5Xb8UyzJpFZgx0T478O8AOAwHx5ZCHrABUkR5jeip9ioYYq18jc5Tg5yRcVnI6hpQN3omFn9uy8z7U99--v57j6CtxkzrH0S9Rxc
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/FOCS57990.2023.00108
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISBN 9798350318944
EISSN 2575-8454
EndPage 1786
ExternalDocumentID 10353163
Genre orig-research
GroupedDBID --Z
6IE
6IH
6IK
ALMA_UNASSIGNED_HOLDINGS
CBEJK
RIE
RIO
ID FETCH-LOGICAL-i204t-3a6ce189081fc8e59f7f1d092997b11a9ba2f49e32ab18a9d1e69486f6bb013d3
IEDL.DBID RIE
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001137125900102&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:25:35 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i204t-3a6ce189081fc8e59f7f1d092997b11a9ba2f49e32ab18a9d1e69486f6bb013d3
PageCount 9
ParticipantIDs ieee_primary_10353163
PublicationCentury 2000
PublicationDate 2023-Nov.-6
PublicationDateYYYYMMDD 2023-11-06
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-Nov.-6
  day: 06
PublicationDecade 2020
PublicationTitle Proceedings / annual Symposium on Foundations of Computer Science
PublicationTitleAbbrev FOCS
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0040504
Score 2.296041
Snippet We prove a k^{-\Omega\left(\log \left(\varepsilon_{2}-\varepsilon_{1}\right)\right)} lower bound for adap- tively testing whether a Boolean function is...
SourceID ieee
SourceType Publisher
StartPage 1778
SubjectTerms Boolean functions
Computer science
Juntas
Property Testing
Sublinear Algorithms
Testing
Tolerant Testing
Title New Lower Bounds for Adaptive Tolerant Junta Testing
URI https://ieeexplore.ieee.org/document/10353163
WOSCitedRecordID wos001137125900102&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1BxQBLoRTxLQ-sKXbsxPEIFRVCpVSioG6Vk5xRJZRWbcrv55ymhYWBzfJi6ey7e2f73QO4sWHkTIg2SGwoA2U49z5HI80VGgwtVh9k3_t6MEjGYzOsyeoVFwYRq89n2PHD6i0_n2Urf1VGHi7pyMRyF3a1jtdkrU3YJeDBVc2NE9zc9l66r5GmWNvxAuH-wcErSP5SUKkSSK_5z6UPof1DxWPDbZI5gh0sWtDcaDGw2jVbcPC87b-6PAZFsYv1vQAau_e6SUtG2JTd5XbuoxsbzT6RclTJnlZFadnId9ooPtrw1nsYdR-DWh8hmIZclYG0cYYiMZTVXZZgZJx2IucEeIxOhbAmtaFTBmVoU5FYkwuMjUpiF6f-9jOXJ9AoZgWeAsupzKLahvCYTBXyLHUEZJwwEUoqkU1yBm1vk8l83QJjsjHH-R_zF7DvzV6R9uJLaJSLFV7BXvZVTpeL62rjvgGxa5dM
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4omqgXFTG-7cHrYl_76FGJBHVBEtFwI93dqSExC4HF32-7LOjFg7emlybTzsw3bb_5AG40943iqL1Ic-FJRanzOTsKqUSFXGP5QfY9Dnu9aDhU_YqsXnJhELH8fIZNNyzf8rNJunBXZdbDhT0ygdiELV9KTpd0rVXgtdCDyoodx6i6bb-0Xv3QRtumkwh3Tw5OQ_KXhkqZQtr7_1z8ABo_ZDzSX6eZQ9jAvA77KzUGUjlnHfa66w6s8yOQNnqR2EmgkXunnDQnFp2Su0xPXXwjg8kn2ixVkKdFXmgycL028o8GvLUfBq2OVykkeGNOZeEJHaTIImXzukkj9JUJDcuohTwqTBjTKtHcSIWC64RFWmUMAyWjwASJu__MxDHU8kmOJ0AyW2jZ6sYiMpFIpGliLJQxTPkobJGsolNoOJuMpssmGKOVOc7-mL-Gnc6gG4_ix97zOey6LSgpfMEF1IrZAi9hO_0qxvPZVbmJ38MWmpM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%2F+annual+Symposium+on+Foundations+of+Computer+Science&rft.atitle=New+Lower+Bounds+for+Adaptive+Tolerant+Junta+Testing&rft.au=Chen%2C+Xi&rft.au=Patel%2C+Shyamal&rft.date=2023-11-06&rft.pub=IEEE&rft.eissn=2575-8454&rft.spage=1778&rft.epage=1786&rft_id=info:doi/10.1109%2FFOCS57990.2023.00108&rft.externalDocID=10353163