Gradient based Information Aggregation of GNN for Precoder Learning
Employing graph neural networks (GNNs) for learning the multiuser multi-input multi-output precoder has gained significant attention recently. By modeling the precoder optimization problem in a graph format, GNN can effectively capture the representation of the precoder by leveraging the information...
Uloženo v:
| Vydáno v: | IEEE Vehicular Technology Conference s. 1 - 6 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
10.10.2023
|
| Témata: | |
| ISSN: | 2577-2465 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Employing graph neural networks (GNNs) for learning the multiuser multi-input multi-output precoder has gained significant attention recently. By modeling the precoder optimization problem in a graph format, GNN can effectively capture the representation of the precoder by leveraging the information aggregated and propagated across the graph. In this paper, we strive to design the information aggregation mechanism of GNN. By analyzing the behavior of the numerical gradient descent algorithm for precoder optimization, we identify the relevant information and the appropriate form for aggregation, enabling us to develop new update equations for GNNs. Simulation results demonstrate the advantages of the proposed GNNs in learning and generalization performance. |
|---|---|
| ISSN: | 2577-2465 |
| DOI: | 10.1109/VTC2023-Fall60731.2023.10333802 |