The Backpropagation algorithm for a math student
A Deep Neural Network (DNN) is a composite function of vector-valued functions, and in order to train a DNN, it is necessary to calculate the gradient of the loss function with respect to all parameters. This calculation can be a non-trivial task because the loss function of a DNN is a composition o...
Uložené v:
| Vydané v: | Proceedings of ... International Joint Conference on Neural Networks s. 01 - 09 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
18.06.2023
|
| Predmet: | |
| ISSN: | 2161-4407 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | A Deep Neural Network (DNN) is a composite function of vector-valued functions, and in order to train a DNN, it is necessary to calculate the gradient of the loss function with respect to all parameters. This calculation can be a non-trivial task because the loss function of a DNN is a composition of several nonlinear functions, each with numerous parameters. The Backpropagation (BP) algorithm leverages the composite structure of the DNN to efficiently compute the gradient. As a result, the number of layers in the network does not significantly impact the complexity of the calculation. The objective of this paper is to express the gradient of the loss function in terms of a matrix multiplication using the Jacobian operator. This can be achieved by considering the total derivative of each layer with respect to its parameters and expressing it as a Jacobian matrix. The gradient can then be represented as the matrix product of these Jacobian matrices. This approach is valid because the chain rule can be applied to a composition of vector-valued functions, and the use of Jacobian matrices allows for the incorporation of multiple inputs and outputs. By providing concise mathematical justifications, the results can be made understandable and useful to a broad audience from various disciplines. |
|---|---|
| AbstractList | A Deep Neural Network (DNN) is a composite function of vector-valued functions, and in order to train a DNN, it is necessary to calculate the gradient of the loss function with respect to all parameters. This calculation can be a non-trivial task because the loss function of a DNN is a composition of several nonlinear functions, each with numerous parameters. The Backpropagation (BP) algorithm leverages the composite structure of the DNN to efficiently compute the gradient. As a result, the number of layers in the network does not significantly impact the complexity of the calculation. The objective of this paper is to express the gradient of the loss function in terms of a matrix multiplication using the Jacobian operator. This can be achieved by considering the total derivative of each layer with respect to its parameters and expressing it as a Jacobian matrix. The gradient can then be represented as the matrix product of these Jacobian matrices. This approach is valid because the chain rule can be applied to a composition of vector-valued functions, and the use of Jacobian matrices allows for the incorporation of multiple inputs and outputs. By providing concise mathematical justifications, the results can be made understandable and useful to a broad audience from various disciplines. |
| Author | Damadi, Saeed Shen, Jinglai Cham, Mostafa Moharrer, Golnaz |
| Author_xml | – sequence: 1 givenname: Saeed surname: Damadi fullname: Damadi, Saeed email: sdamadi1@umbc.edu organization: University of Maryland, Baltimore County (UMBC),Department of Mathematics and Statistics,Baltimore,USA – sequence: 2 givenname: Golnaz surname: Moharrer fullname: Moharrer, Golnaz email: golnazm1@umbc.edu organization: University of Maryland, Baltimore County (UMBC),Department of Information Systems,Baltimore,USA – sequence: 3 givenname: Mostafa surname: Cham fullname: Cham, Mostafa email: mcham2@umbc.edu organization: University of Maryland, Baltimore County (UMBC),Department of Information Systems,Baltimore,USA – sequence: 4 givenname: Jinglai surname: Shen fullname: Shen, Jinglai email: shenj@umbc.edu organization: University of Maryland, Baltimore County (UMBC),Department of Mathematics and Statistics,Baltimore,USA |
| BookMark | eNo1j7lOw0AUABcEEnHgDyj2B2ze28u7JVgQgqLQhDp62SM2xIdsU_D3IAHVNKORJmMXXd9FxjhCgQjubv1SbbdaaQWFACELBHSonTljGRqjlbWmhHO2EGgwVwrKK5ZN0zv8uM7JBYNdHfkD-Y9h7Ac60tz0HafTsR-buW556kdOvKW55tP8GWI3X7PLRKcp3vxxyd6eHnfVc755Xa2r-03eCFBzLpVVJtEhaC2S08koDC4YX1qRPAlbkk2qTAftBXgMwXpALY1MpAV6ILlkt7_dJsa4H8ampfFr_78nvwGKl0Z0 |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/IJCNN54540.2023.10191596 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) (UW System Shared) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISBN | 1665488670 9781665488679 |
| EISSN | 2161-4407 |
| EndPage | 09 |
| ExternalDocumentID | 10191596 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP IPLJI M43 OCL RIE RIL RIO RNS |
| ID | FETCH-LOGICAL-i204t-34846fabd552f95f641d9d6c782fca287a8f47fb5c20c1dd8c015363fa521c0a3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001046198704050&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:12:24 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i204t-34846fabd552f95f641d9d6c782fca287a8f47fb5c20c1dd8c015363fa521c0a3 |
| PageCount | 9 |
| ParticipantIDs | ieee_primary_10191596 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-June-18 |
| PublicationDateYYYYMMDD | 2023-06-18 |
| PublicationDate_xml | – month: 06 year: 2023 text: 2023-June-18 day: 18 |
| PublicationDecade | 2020 |
| PublicationTitle | Proceedings of ... International Joint Conference on Neural Networks |
| PublicationTitleAbbrev | IJCNN |
| PublicationYear | 2023 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0023993 |
| Score | 1.8784783 |
| Snippet | A Deep Neural Network (DNN) is a composite function of vector-valued functions, and in order to train a DNN, it is necessary to calculate the gradient of the... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 01 |
| SubjectTerms | Complexity theory Computer architecture Convolutional neural networks Iterative algorithms Jacobian matrices Stochastic processes Transformers |
| Title | The Backpropagation algorithm for a math student |
| URI | https://ieeexplore.ieee.org/document/10191596 |
| WOSCitedRecordID | wos001046198704050&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwMhEJ7YxoOn-qjxHQ5ed2V3gYWrjY0as-lBk94anrZRW9Nu_f0C3a3x4MEbgRDCTOCbgZn5AK4DmYMfw0l8YyKlYokgmUsUdlyXgufSRdaSp7Kq-HgsRk2yesyFsdbG4DObhmb8yzcLvQ5PZf6Ee--CCtaBTlmyTbLW1rsKSNuG6mBx8_A4qCoa6sulgSE8bef-YlGJIDLs_XP5fej_pOOh0RZoDmDHzg-h1_IxoOZ4HgH2Oke3Ur_5W9HfE1HmSL6_LpazevqBvHmKJPIW6hStNhUt-_AyvHse3CcNI0IyyzGpk4J4c8FJZSjNnaCOkcwIw7SHeaeld34kd6R0iuoc68wYrj3aF6xw0qO0xrI4hu58MbcngLDlDishtJOccGVUYYQkFLM81OjL9Sn0gwQmn5uiF5N282d_9J_DXpBziKLK-AV06-XaXsKu_qpnq-VVVNU3m5ST1g |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4omugJHxjf9uB1sdttd9urRAKKGw6YcCPdPoSoYGDx99sWFuPBg7emTZN2Ju03087MB3DryRzcGI7CGxPNijQSNLZRgS1XmeBE2sBa0svynA-Hor9OVg-5MMaYEHxmmr4Z_vL1TC39U5k74c67YCLdhh1GKcGrdK2Nf-WxtgrWweKu-9jKc-YrzDU9R3izmv2LRyXASLv-zwUcQOMnIQ_1N1BzCFtmegT1ipEBrQ_oMWCndXQv1Zu7F91NEaSO5PvrbD4pxx_IGahIImejjtFiVdOyAS_th0GrE605EaIJwbSMEuoMBisLzRixgtmUxlroVDmgt0o690dySzNbMEWwirXmyuF9kiZWOpxWWCYnUJvOpuYUEDbc4kIIZSWnvNBFooWkDKfEV-kj6gwaXgKjz1XZi1G1-fM_-m9grzN47o163fzpAva9zH1MVcwvoVbOl-YKdtVXOVnMr4PavgF-z5cd |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+of+...+International+Joint+Conference+on+Neural+Networks&rft.atitle=The+Backpropagation+algorithm+for+a+math+student&rft.au=Damadi%2C+Saeed&rft.au=Moharrer%2C+Golnaz&rft.au=Cham%2C+Mostafa&rft.au=Shen%2C+Jinglai&rft.date=2023-06-18&rft.pub=IEEE&rft.eissn=2161-4407&rft.spage=01&rft.epage=09&rft_id=info:doi/10.1109%2FIJCNN54540.2023.10191596&rft.externalDocID=10191596 |