OpTaS: An Optimization-based Task Specification Library for Trajectory Optimization and Model Predictive Control

This paper presents OpTaS, a task specification Python library for Trajectory Optimization (TO) and Model Predictive Control (MPC) in robotics. Both TO and MPC are increasingly receiving interest in optimal control and in particular handling dynamic environments. While a flurry of software libraries...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2023 IEEE International Conference on Robotics and Automation (ICRA) s. 9118 - 9124
Hlavní autoři: Mower, Christopher E., Moura, Joao, Behabadi, Nazanin Zamani, Vijayakumar, Sethu, Vercauteren, Tom, Bergeles, Christos
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 29.05.2023
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This paper presents OpTaS, a task specification Python library for Trajectory Optimization (TO) and Model Predictive Control (MPC) in robotics. Both TO and MPC are increasingly receiving interest in optimal control and in particular handling dynamic environments. While a flurry of software libraries exists to handle such problems, they either provide interfaces that are limited to a specific problem formulation (e.g. TracIK, CHOMP), or are large and statically specify the problem in configuration files (e.g. EXOTica, eTaSL). OpTaS, on the other hand, allows a user to specify custom nonlinear constrained problem formulations in a single Python script allowing the controller parameters to be modified during execution. The library provides interface to several open source and commercial solvers (e.g. IPOPT, SNOPT, KNITRO, SciPy) to facilitate integration with established workflows in robotics. Further benefits of OpTaS are highlighted through a thorough comparison with common libraries. An additional key advantage of OpTaS is the ability to define optimal control tasks in the joint-space, task-space, or indeed simultaneously. The code for OpTaS is easily installed via pip, and the source code with examples can be found at github.com/cmower/optas.
AbstractList This paper presents OpTaS, a task specification Python library for Trajectory Optimization (TO) and Model Predictive Control (MPC) in robotics. Both TO and MPC are increasingly receiving interest in optimal control and in particular handling dynamic environments. While a flurry of software libraries exists to handle such problems, they either provide interfaces that are limited to a specific problem formulation (e.g. TracIK, CHOMP), or are large and statically specify the problem in configuration files (e.g. EXOTica, eTaSL). OpTaS, on the other hand, allows a user to specify custom nonlinear constrained problem formulations in a single Python script allowing the controller parameters to be modified during execution. The library provides interface to several open source and commercial solvers (e.g. IPOPT, SNOPT, KNITRO, SciPy) to facilitate integration with established workflows in robotics. Further benefits of OpTaS are highlighted through a thorough comparison with common libraries. An additional key advantage of OpTaS is the ability to define optimal control tasks in the joint-space, task-space, or indeed simultaneously. The code for OpTaS is easily installed via pip, and the source code with examples can be found at github.com/cmower/optas.
Author Vercauteren, Tom
Mower, Christopher E.
Bergeles, Christos
Behabadi, Nazanin Zamani
Vijayakumar, Sethu
Moura, Joao
Author_xml – sequence: 1
  givenname: Christopher E.
  surname: Mower
  fullname: Mower, Christopher E.
  email: christopher.mower@kcl.ac.uk
  organization: School of Biomedical Engineering & Imaging Sciences, King's College,London,UK
– sequence: 2
  givenname: Joao
  surname: Moura
  fullname: Moura, Joao
  organization: School of Informatics, University of Edinburgh,UK
– sequence: 3
  givenname: Nazanin Zamani
  surname: Behabadi
  fullname: Behabadi, Nazanin Zamani
– sequence: 4
  givenname: Sethu
  surname: Vijayakumar
  fullname: Vijayakumar, Sethu
  organization: School of Informatics, University of Edinburgh,UK
– sequence: 5
  givenname: Tom
  surname: Vercauteren
  fullname: Vercauteren, Tom
  organization: School of Biomedical Engineering & Imaging Sciences, King's College,London,UK
– sequence: 6
  givenname: Christos
  surname: Bergeles
  fullname: Bergeles, Christos
  organization: School of Biomedical Engineering & Imaging Sciences, King's College,London,UK
BookMark eNpNkNtKxDAYhCPoha77BoJ5gdYcNmnrXSnqLlQqbr1ecvgD0W5T0iDo01s8gFfD8DHDMBfodAwjIHRNSU4pqW52zXO9KcuK5owwnlNCJWUFO0HrqqhKLghnXIryHE3d1Kv9La5H3E3JH_2nSj6MmVYzWNyr-Q3vJzDeefMNcOt1VPEDuxBxH9UrmBQW-z-M1WjxY7Aw4KcI1pvk3wE3YUwxDJfozKlhhvWvrtDL_V3fbLO2e9g1dZt5RjYpY5ZQEEJLqXgBwpSGKWssL5wRnEqzQOWEZkA4d4ZYR7Q0WmtOHLXSSb5CVz-9HgAOU_THZfXh7wj-BTZjWtk
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICRA48891.2023.10161272
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350323658
EndPage 9124
ExternalDocumentID 10161272
Genre orig-research
GrantInformation_xml – fundername: Alan Turing Institute, UK
  funderid: 10.13039/100012338
– fundername: Medtronic
  funderid: 10.13039/100004374
– fundername: Wellcome
  funderid: 10.13039/100004440
– fundername: EPSRC
  grantid: WT203148/Z/16/Z,NS/A000049/1
  funderid: 10.13039/501100000266
– fundername: ERC
  grantid: 714562
  funderid: 10.13039/100010663
GroupedDBID 6IE
6IH
CBEJK
RIE
RIO
ID FETCH-LOGICAL-i204t-2d01e55b66a37e5c8c2adcd37fc5316c1e5af5b2e033fc0df0b6cbbb30f1d6f63
IEDL.DBID RIE
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001048371101112&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Thu Jan 18 11:14:42 EST 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i204t-2d01e55b66a37e5c8c2adcd37fc5316c1e5af5b2e033fc0df0b6cbbb30f1d6f63
PageCount 7
ParticipantIDs ieee_primary_10161272
PublicationCentury 2000
PublicationDate 2023-May-29
PublicationDateYYYYMMDD 2023-05-29
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-May-29
  day: 29
PublicationDecade 2020
PublicationTitle 2023 IEEE International Conference on Robotics and Automation (ICRA)
PublicationTitleAbbrev ICRA
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.909385
Snippet This paper presents OpTaS, a task specification Python library for Trajectory Optimization (TO) and Model Predictive Control (MPC) in robotics. Both TO and MPC...
SourceID ieee
SourceType Publisher
StartPage 9118
SubjectTerms Codes
Optimal control
Planning
Software libraries
Source coding
Task analysis
Trajectory optimization
Title OpTaS: An Optimization-based Task Specification Library for Trajectory Optimization and Model Predictive Control
URI https://ieeexplore.ieee.org/document/10161272
WOSCitedRecordID wos001048371101112&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG6UePCkRoyKmh68LnS7bLv1RohEL0AUE26kj2mCj4XwMPHf2ymLhoMHb5vuNk3abWc633zzEXIrC8RElU8kx6LaBahEg5eJtsrp4L5y70wUm5D9fjEeq2FFVo9cGACIyWfQxMeI5buZXWOorIU3zZTLcOLuSyk2ZK0qZytlqvXYfeqE_1HhtY9nze3XO7op0Wz0jv454DGp_xLw6PDHtJyQPShPyXwwH-nnO9op6SBs9I-KQZmgIXJ0pJdvNKrJ-yoMRytOAg1-KQ026TUG6L92OlNdOop6aO9hPMRs8PSj3U3-ep289O5H3YekEkxIppy1Vwl3LIU8N0LoTEJuC8u1sy6T3oatJmx4qX1uOLAs85Y5z4ywxpiM-dQJL7IzUitnJZwT6ovguwirEXdtS2EKBaALm3qN9aqAXZA6TtdkvqmJMdnO1OUf7Q1yiIuCuDtXV6S2WqzhmhzYz9V0ubiJK_kN5zajeA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5SBT2pWPFtDl63zWa7ycZbKUqLtS26Qm8ljwnUx7b0IfjvTdKt0oMHb0t2QyDZZCbzzTcfQjc885iosBGnvqh2BiKSYHkktTDSua_UGhXEJnivlw2HYlCS1QMXBgBC8hnU_GPA8s1EL32orO5vmjHl7sTdThsNSlZ0rTJrKyai3mk9Nd0fKfzFjya19fcbyinBcNzv_3PIA1T9peDhwY9xOURbUByhaX-ay-db3Cxw3231j5JDGXlTZHAu52846MnbMhCHS1YCdp4pdlbpNYTovzY6Y1kY7BXR3t14HrXx5x9urTLYq-jl_i5vtaNSMiEaU9JYRNSQGNJUMSYTDqnONJVGm4Rb7TYb0-6ltKmiQJLEamIsUUwrpRJiY8MsS45RpZgUcIKwzZz3wrT0yGuDM5UJAJnp2EpfsQrIKar66RpNV1UxRuuZOvuj_RrttvPH7qjb6T2coz2_QB6Fp-ICVRazJVyiHf25GM9nV2FVvwGSGaa_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+IEEE+International+Conference+on+Robotics+and+Automation+%28ICRA%29&rft.atitle=OpTaS%3A+An+Optimization-based+Task+Specification+Library+for+Trajectory+Optimization+and+Model+Predictive+Control&rft.au=Mower%2C+Christopher+E.&rft.au=Moura%2C+Joao&rft.au=Behabadi%2C+Nazanin+Zamani&rft.au=Vijayakumar%2C+Sethu&rft.date=2023-05-29&rft.pub=IEEE&rft.spage=9118&rft.epage=9124&rft_id=info:doi/10.1109%2FICRA48891.2023.10161272&rft.externalDocID=10161272