Optimizing Algorithms from Pairwise User Preferences

Typical black-box optimization approaches in robotics focus on learning from metric scores. However, that is not always possible, as not all developers have ground truth available. Learning appropriate robot behavior in human-centric contexts often requires querying users, who typically cannot provi...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings of the ... IEEE/RSJ International Conference on Intelligent Robots and Systems s. 4161 - 4167
Hlavní autoři: Keselman, Leonid, Shih, Katherine, Hebert, Martial, Steinfeld, Aaron
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.10.2023
Témata:
ISSN:2153-0866
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Typical black-box optimization approaches in robotics focus on learning from metric scores. However, that is not always possible, as not all developers have ground truth available. Learning appropriate robot behavior in human-centric contexts often requires querying users, who typically cannot provide precise metric scores. Existing approaches leverage human feedback in an attempt to model an implicit reward function; however, this reward may be difficult or impossible to effectively capture. In this work, we introduce SortCMA to optimize algorithm parameter configurations in high dimensions based on pairwise user preferences. SortCMA efficiently and robustly leverages user input to find parameter sets without directly modeling a reward. We apply this method to tuning a commercial depth sensor without ground truth, and to robot social navigation, which involves highly complex preferences over robot behavior. We show that our method succeeds in optimizing for the user's goals and perform a user study to evaluate social navigation results.
AbstractList Typical black-box optimization approaches in robotics focus on learning from metric scores. However, that is not always possible, as not all developers have ground truth available. Learning appropriate robot behavior in human-centric contexts often requires querying users, who typically cannot provide precise metric scores. Existing approaches leverage human feedback in an attempt to model an implicit reward function; however, this reward may be difficult or impossible to effectively capture. In this work, we introduce SortCMA to optimize algorithm parameter configurations in high dimensions based on pairwise user preferences. SortCMA efficiently and robustly leverages user input to find parameter sets without directly modeling a reward. We apply this method to tuning a commercial depth sensor without ground truth, and to robot social navigation, which involves highly complex preferences over robot behavior. We show that our method succeeds in optimizing for the user's goals and perform a user study to evaluate social navigation results.
Author Shih, Katherine
Steinfeld, Aaron
Keselman, Leonid
Hebert, Martial
Author_xml – sequence: 1
  givenname: Leonid
  surname: Keselman
  fullname: Keselman, Leonid
  email: lkeselma@cs.cmu.edu
  organization: Robotics Institute, School of Computer Science, Carnegie Mellon University,Pittsburgh,PA,USA,15232
– sequence: 2
  givenname: Katherine
  surname: Shih
  fullname: Shih, Katherine
  email: kshih@cs.cmu.edu
  organization: Robotics Institute, School of Computer Science, Carnegie Mellon University,Pittsburgh,PA,USA,15232
– sequence: 3
  givenname: Martial
  surname: Hebert
  fullname: Hebert, Martial
  email: hebert@cs.cmu.edu
  organization: Robotics Institute, School of Computer Science, Carnegie Mellon University,Pittsburgh,PA,USA,15232
– sequence: 4
  givenname: Aaron
  surname: Steinfeld
  fullname: Steinfeld, Aaron
  email: astein@cs.cmu.edu
  organization: Robotics Institute, School of Computer Science, Carnegie Mellon University,Pittsburgh,PA,USA,15232
BookMark eNo1j91KwzAYQKMouM29gWBfoPP78tfkcgx_BoMOddejSb_MyNqOpCD69ArquTl3B86UXfRDT4zdIiwQwd6tn-sX9QNfcOBigSAkB4NnbIpaK2nRgj5nE45KlGC0vmLznN8BAKGyxuoJk_VpjF38iv2hWB4PQ4rjW5eLkIau2DYxfcRMxS5TKraJAiXqPeVrdhmaY6b5n2ds93D_unoqN_XjerXclJGDHEvuTTDOG29MqKwHQuVb1ZBzrayAo_aOyGrnNOoqcKlIVq6FIHkQ0gopZuzmtxuJaH9KsWvS5_7_UnwDtMNJFA
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/IROS55552.2023.10342081
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 1665491906
9781665491907
EISSN 2153-0866
EndPage 4167
ExternalDocumentID 10342081
Genre orig-research
GrantInformation_xml – fundername: Office of Naval Research
  grantid: 90DPGE0003
  funderid: 10.13039/100000006
– fundername: National Institute on Disability, Independent Living, and Rehabilitation Research
  grantid: 90DPGE0003
  funderid: 10.13039/100006663
GroupedDBID 6IE
6IF
6IH
6IL
6IN
AAJGR
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i204t-2c8f8bc8c88f79c0e15cd5aebbd470216cbee96bb6167f245e47bd0f42f349343
IEDL.DBID RIE
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001133658803022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:25:30 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i204t-2c8f8bc8c88f79c0e15cd5aebbd470216cbee96bb6167f245e47bd0f42f349343
PageCount 7
ParticipantIDs ieee_primary_10342081
PublicationCentury 2000
PublicationDate 2023-Oct.-1
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-Oct.-1
  day: 01
PublicationDecade 2020
PublicationTitle Proceedings of the ... IEEE/RSJ International Conference on Intelligent Robots and Systems
PublicationTitleAbbrev IROS
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001079896
Score 2.2741547
Snippet Typical black-box optimization approaches in robotics focus on learning from metric scores. However, that is not always possible, as not all developers have...
SourceID ieee
SourceType Publisher
StartPage 4161
SubjectTerms Behavioral sciences
Closed box
Measurement
Navigation
Robot sensing systems
Robustness
Tuning
Title Optimizing Algorithms from Pairwise User Preferences
URI https://ieeexplore.ieee.org/document/10342081
WOSCitedRecordID wos001133658803022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB60eNCLr4pv9uA1NZvNbpKjiEVB2qJWeitJdqIL9kG3VfDXm2xbqwcP5pQEEpJJhmEe3wzAhXSpk4oi0Uoh4coxomysiaCKGu1FuKhKsjzfi1ZL9nqqswCrV1gYRKyCz7ARupUvPx_ZWTCVeQ5PgjfYKzvrQmRzsNbKoEKFkipbxHDFVF3ePbQfU98C3ooljeXqX3VUKjHS3P7nAXagvgLkRZ1vUbMLazjcg60fuQT3gbc98w-KTz-Irt5eRl7pfx2UUYCPRB1dTD6KEqOu_3B-o2Vy2bIO3ebN0_UtWZREIAWjfEqYlU4aK62UTihLMU5tnmo0JufCi-vMGkSVGZPFmXCMp8iFyanjzCVcJTw5gNpwNMRDiCxa5_JUakElN3FIEoNWB49LLHJm8AjqgQD98TzrRX959-M_5k9gM5B5Huh2CrXpZIZnsGHfp0U5Oa_e6gunTJTe
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG4MmqgXXxjf7sFrsbvbbtujMRKICETBcCNtd4qbCBgWNPHX2y4gevBgT9MmbdppJ5PpzDeD0JWwzApJACspAVNpIyxNqDAnkmjlVDgvSrI8N3izKXo92V6A1QssDAAUwWdQ8WThy0_HZua_ypyEx94b7IyddUYdNYdrrb5UCJdCJosorpDI6_pj64m55hFXUVxZzv9VSaVQJNWdf25hF5VXkLyg_a1s9tAajPbR9o9sggeItpz4D7NP1wluXgdjZ_a_DPPAA0iCtsomH1kOQdc9ObfQMr1sXkbd6l3ntoYXRRFwFhE6xZERVmgjjBCWS0MgZCZlCrROKXcKOzEaQCZaJ2HCbUQZUK5TYmlkYypjGh-i0mg8giMUGDDWpkwoTgTVoU8TA0Z5n0vI00jDMSp7BvTf5nkv-suzn_wxfok2a52HRr9Rb96foi3P8nnY2xkqTSczOEcb5n2a5ZOL4t6-AJfMmCU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+of+the+...+IEEE%2FRSJ+International+Conference+on+Intelligent+Robots+and+Systems&rft.atitle=Optimizing+Algorithms+from+Pairwise+User+Preferences&rft.au=Keselman%2C+Leonid&rft.au=Shih%2C+Katherine&rft.au=Hebert%2C+Martial&rft.au=Steinfeld%2C+Aaron&rft.date=2023-10-01&rft.pub=IEEE&rft.eissn=2153-0866&rft.spage=4161&rft.epage=4167&rft_id=info:doi/10.1109%2FIROS55552.2023.10342081&rft.externalDocID=10342081