Engineering Massively Parallel MST Algorithms
We develop and extensively evaluate highly scalable distributed-memory algorithms for computing minimum spanning trees (MSTs). At the heart of our solutions is a scalable variant of Borůvka's algorithm. For partitioned graphs with many local edges we improve this with an effective form of contr...
Uloženo v:
| Vydáno v: | Proceedings - IEEE International Parallel and Distributed Processing Symposium s. 691 - 701 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.05.2023
|
| Témata: | |
| ISSN: | 1530-2075 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | We develop and extensively evaluate highly scalable distributed-memory algorithms for computing minimum spanning trees (MSTs). At the heart of our solutions is a scalable variant of Borůvka's algorithm. For partitioned graphs with many local edges we improve this with an effective form of contracting local parts of the graph during a preprocessing step. We also adapt the filtering concept of the best practical sequential algorithm to develop a massively parallel Filter-Borůvka algorithm that is very useful for graphs with poor locality and high average degree. Our experiments indicate that our algorithms scale well up to at least 65 536 cores and are up to 800 times faster than previous distributed MST algorithms. |
|---|---|
| AbstractList | We develop and extensively evaluate highly scalable distributed-memory algorithms for computing minimum spanning trees (MSTs). At the heart of our solutions is a scalable variant of Borůvka's algorithm. For partitioned graphs with many local edges we improve this with an effective form of contracting local parts of the graph during a preprocessing step. We also adapt the filtering concept of the best practical sequential algorithm to develop a massively parallel Filter-Borůvka algorithm that is very useful for graphs with poor locality and high average degree. Our experiments indicate that our algorithms scale well up to at least 65 536 cores and are up to 800 times faster than previous distributed MST algorithms. |
| Author | Sanders, Peter Schimek, Matthias |
| Author_xml | – sequence: 1 givenname: Peter surname: Sanders fullname: Sanders, Peter email: sanders@kit.edu organization: Karlsruhe Institute of Technology,Institute of Theoretical Informatics,Karlsruhe,Germany – sequence: 2 givenname: Matthias surname: Schimek fullname: Schimek, Matthias email: schimek@kit.edu organization: Karlsruhe Institute of Technology,Institute of Theoretical Informatics,Karlsruhe,Germany |
| BookMark | eNotjNFKAkEUQKcoSM0_KNgfWLt37s7O3EcxK0FpQXuWcb27TYxr7Ejg3yfU03k4nDNUN92xE6UeESaIwE-L6rlam4INTzRomgCANVdqzJYdGSCyZamv1QANQa4v7k4NU_oC0EAFD1Q-79rQifSha7OVTyn8SDxnle99jBKz1XqTTWN77MPp85Du1W3jY5LxP0fq42W-mb3ly_fXxWy6zIOG4pTrurRo9k3NeyLyhWk0Ou9qchp3TjstaBnB1ztjoPTIwkhcNJeACARopB7-vkFEtt99OPj-vEVAa4k1_QJaL0RW |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/IPDPS54959.2023.00075 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISBN | 9798350337662 |
| EISSN | 1530-2075 |
| EndPage | 701 |
| ExternalDocumentID | 10177392 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: European Research Council funderid: 10.13039/501100000781 |
| GroupedDBID | 29O 6IE 6IF 6IH 6IK 6IL 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI OCL RIE RIL |
| ID | FETCH-LOGICAL-i204t-2c6715dfc9d333a45f218a8c3821b8282e17910acb5506a19e91394ffc9330e03 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001035517300066&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:11:46 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i204t-2c6715dfc9d333a45f218a8c3821b8282e17910acb5506a19e91394ffc9330e03 |
| PageCount | 11 |
| ParticipantIDs | ieee_primary_10177392 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-May |
| PublicationDateYYYYMMDD | 2023-05-01 |
| PublicationDate_xml | – month: 05 year: 2023 text: 2023-May |
| PublicationDecade | 2020 |
| PublicationTitle | Proceedings - IEEE International Parallel and Distributed Processing Symposium |
| PublicationTitleAbbrev | IPDPS |
| PublicationYear | 2023 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0020349 |
| Score | 1.8665897 |
| Snippet | We develop and extensively evaluate highly scalable distributed-memory algorithms for computing minimum spanning trees (MSTs). At the heart of our solutions is... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 691 |
| SubjectTerms | distributed algorithms Distributed processing Filtering Filtering algorithms graph algorithms Heart minimum spanning tree MPI Partitioning algorithms |
| Title | Engineering Massively Parallel MST Algorithms |
| URI | https://ieeexplore.ieee.org/document/10177392 |
| WOSCitedRecordID | wos001035517300066&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5s8eCpPiq-ycFrbLKbbLJHUYuCLQut0FvJZrNaqG3ZbgX_vZnttvbiwVsIhJDnl8nM9w3ArfSgy6zmNOXoZvQIQLWWjLo881vKRVq6Sl3_VfX7ejSKk5qsXnFhnHNV8Jm7w2Lly8_mdoVfZR3cPsoDegMaSkVrstbWukKhlZqiw1nceUkek4E3fiSyUQKUMWUYS7iTQqVCkG7rn30fQvuXi0eSLcocwZ6bHUNrk4yB1GfzBOiOsiDp-Sexv8am3yQxBWZLmZLeYEjup-_zYlJ-fC7b8NZ9Gj480zoXAp0ETJQ0sJHiMsttnIVhaITMPTYbbUMd8NRbTYFDnVFmbOpNjsjw2KHep8h9g9DPOQtPoTmbz9wZEOeMUJG10qRKxGGUCslywTN0wqIX8hzaOPzxYi13Md6M_OKP-ks4wBleRwFeQbMsVu4a9u1XOVkWN9Ui_QBb9pAU |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4omugJHxjf9uC10t22u92j8RGIQDYBE26k2-0qCYJZFhP_vZ1lQS4evDVNmqbPr9OZ7xuAW-lAlxnl0cRDN6NDAKqUZNRmqdtSNlDSlur6nbDXU8NhFFdk9ZILY60tg8_sHRZLX346Mwv8Kmvi9gkdoG_DjhTCZ0u61tq-QqmViqTjsajZjh_jvjN_JPJRfBQyZRhNuJFEpcSQ5_o_ez-Axi8bj8RrnDmELTs9gvoqHQOpTucx0A1tQdJ1j2J3kU2-SaxzzJcyId3-gNxP3mb5uHj_mDfg9flp8NCiVTYEOvaZKKhvgtCTaWailHOuhcwcOmtluPK9xNlNvkWlUaZN4oyOQHuRRcVPkbkG3M064ydQm86m9hSItVqEgTFSJ6GIeJAIyTLhpeiGRT_kGTRw-KPPpeDFaDXy8z_qb2CvNeh2Rp127-UC9nG2lzGBl1Ar8oW9gl3zVYzn-XW5YD8PL5Nb |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+-+IEEE+International+Parallel+and+Distributed+Processing+Symposium&rft.atitle=Engineering+Massively+Parallel+MST+Algorithms&rft.au=Sanders%2C+Peter&rft.au=Schimek%2C+Matthias&rft.date=2023-05-01&rft.pub=IEEE&rft.eissn=1530-2075&rft.spage=691&rft.epage=701&rft_id=info:doi/10.1109%2FIPDPS54959.2023.00075&rft.externalDocID=10177392 |