OdorAgent: Generate Odor Sequences for Movies Based on Large Language Model

Numerous studies have shown that integrating scents into movies enhances viewer engagement and immersion. However, creating such olfactory experiences often requires professional perfumers to match scents, limiting their widespread use. To address this, we propose OdorAgent which combines a LLM with...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings (IEEE Conference on Virtual Reality and 3D User Interfaces. Online) s. 105 - 114
Hlavní autoři: Zhang, Yu, Gao, Peizhong, Kang, Fangzhou, Li, Jiaxiang, Liu, Jiacheng, Lu, Qi, Xu, Yingqing
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 16.03.2024
Témata:
ISSN:2642-5254
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Numerous studies have shown that integrating scents into movies enhances viewer engagement and immersion. However, creating such olfactory experiences often requires professional perfumers to match scents, limiting their widespread use. To address this, we propose OdorAgent which combines a LLM with a text-image model to automate video-odor matching. The generation framework is in four dimensions: subject matter, emotion, space, and time. We applied it to a specific movie and conducted user studies to evaluate and compare the effectiveness of different system elements. The results indicate that OdorAgent possesses significant scene adaptability and enables inexperienced individuals to design odor experiences for video and images.
ISSN:2642-5254
DOI:10.1109/VR58804.2024.00034