Hybrid clustering algorithm based on ISFLA and PFCM with application to UBSS

To improve the sensitivity to initial values, poor robustness, and easy to fall into local extreme values in traditional fuzzy clustering algorithms, a hybrid clustering algorithm coming to the improved Shuffled Frog Leaping Algorithm (SFLA) and Possibility fuzzy C-means (PFCM) clustering algorithm...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Chinese Control and Decision Conference s. 462 - 468
Hlavní autoři: Kui, Xia, Wei, Li, Jing, Wang, Xinrui, Hong
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 15.08.2022
Témata:
ISSN:1948-9447
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract To improve the sensitivity to initial values, poor robustness, and easy to fall into local extreme values in traditional fuzzy clustering algorithms, a hybrid clustering algorithm coming to the improved Shuffled Frog Leaping Algorithm (SFLA) and Possibility fuzzy C-means (PFCM) clustering algorithm was proposed and applied to the problem of underdetermined blind source separation. The algorithm uses the optimization process of SFLA to replace the iterative process of PFCM's gradient descent method. The improved SFLA initializes the population through the current optimal reverse learning mechanism and adds a Gaussian random walk strategy into the local search of subgroups, which effectively improves the optimization ability of the algorithm. The simulation results show that the ISFLA algorithm has a better optimization effect compared with the traditional Shuffled Frog Leaping Algorithm and the Particle Swarm Optimization algorithm. Meanwhile, the algorithm after fusion improves the robustness, clustering accuracy, and searching ability of the fuzzy clustering algorithm, and successfully realizes the estimation of the underdetermined mixed matrix. The estimation accuracy and stability of the proposed algorithm are high.
AbstractList To improve the sensitivity to initial values, poor robustness, and easy to fall into local extreme values in traditional fuzzy clustering algorithms, a hybrid clustering algorithm coming to the improved Shuffled Frog Leaping Algorithm (SFLA) and Possibility fuzzy C-means (PFCM) clustering algorithm was proposed and applied to the problem of underdetermined blind source separation. The algorithm uses the optimization process of SFLA to replace the iterative process of PFCM's gradient descent method. The improved SFLA initializes the population through the current optimal reverse learning mechanism and adds a Gaussian random walk strategy into the local search of subgroups, which effectively improves the optimization ability of the algorithm. The simulation results show that the ISFLA algorithm has a better optimization effect compared with the traditional Shuffled Frog Leaping Algorithm and the Particle Swarm Optimization algorithm. Meanwhile, the algorithm after fusion improves the robustness, clustering accuracy, and searching ability of the fuzzy clustering algorithm, and successfully realizes the estimation of the underdetermined mixed matrix. The estimation accuracy and stability of the proposed algorithm are high.
Author Xinrui, Hong
Kui, Xia
Wei, Li
Jing, Wang
Author_xml – sequence: 1
  givenname: Xia
  surname: Kui
  fullname: Kui, Xia
  email: 1109371336@qq.com
  organization: Anhui Polytechnic University,Anhui Key Laboratory of Detection Technology and Energy Saving Devices,Wuhu,241000
– sequence: 2
  givenname: Li
  surname: Wei
  fullname: Wei, Li
  email: liwei@ahpu.edu.cn
  organization: Anhui Polytechnic University,Anhui Key Laboratory of Detection Technology and Energy Saving Devices,Wuhu,241000
– sequence: 3
  givenname: Wang
  surname: Jing
  fullname: Jing, Wang
  organization: Anhui Polytechnic University,Anhui Key Laboratory of Detection Technology and Energy Saving Devices,Wuhu,241000
– sequence: 4
  givenname: Hong
  surname: Xinrui
  fullname: Xinrui, Hong
  organization: Anhui Polytechnic University,Anhui Key Laboratory of Detection Technology and Energy Saving Devices,Wuhu,241000
BookMark eNo1j91KwzAYQKMouE7fQDAv0Jr_JpczWjeoKNRdjzT5OiNdO9qK7O0tqFfn4sCBk6CLru8AoTtKMkqJubf20UrJpMoYYSyjhHDBhT5DCVVKilwbZc7RghqhUyNEfoWScfwkRClOyAKV61M9xIB9-zVOMMRuj12774c4fRxw7UYIuO_wpirKFXZdwG-FfcHfs8XueGyjd1Oc_dTj7UNVXaPLxrUj3PxxibbF07tdp-Xr88auyjQyIqaUOR6cJk0wIlAPsgaRGyVqajyjvKk1BQlgiNB1MDOYdzlrAnjh80Abypfo9rcbAWB3HOLBDafd_zr_ASb7T4k
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CCDC55256.2022.10034348
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEL
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 1665478969
9781665478960
EISSN 1948-9447
EndPage 468
ExternalDocumentID 10034348
Genre orig-research
GrantInformation_xml – fundername: Anhui Polytechnic University
  funderid: 10.13039/501100014762
GroupedDBID 29B
6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
ID FETCH-LOGICAL-i204t-2a3da80fd94d1ce5be47964b19c213fb81e5ee9048bd99042ca72fdec4c7d1f13
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000972039300072&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:58:31 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i204t-2a3da80fd94d1ce5be47964b19c213fb81e5ee9048bd99042ca72fdec4c7d1f13
PageCount 7
ParticipantIDs ieee_primary_10034348
PublicationCentury 2000
PublicationDate 2022-Aug.-15
PublicationDateYYYYMMDD 2022-08-15
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-Aug.-15
  day: 15
PublicationDecade 2020
PublicationTitle Chinese Control and Decision Conference
PublicationTitleAbbrev CCDC
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0066300
Score 1.8035885
Snippet To improve the sensitivity to initial values, poor robustness, and easy to fall into local extreme values in traditional fuzzy clustering algorithms, a hybrid...
SourceID ieee
SourceType Publisher
StartPage 462
SubjectTerms Blind source separation
Clustering algorithms
Estimation
Gaussian random walk
Improved Shuffled Frog Leaping Algorithm
Learning systems
Mixed matrix estimation
Probability fuzzy C-mean
Robustness
Simulation
Sociology
Underdetermined Blind Source Separation
Title Hybrid clustering algorithm based on ISFLA and PFCM with application to UBSS
URI https://ieeexplore.ieee.org/document/10034348
WOSCitedRecordID wos000972039300072&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JSwMxFH7Y4kEvbhV3cvA6dbLNctTRoUIthVrprWSSN1qoM1Kngv_eZNpqPXjwFh6EwAvJl7d8XwAupcgFEyg8JXMboAiaeVkslWehjvvKCbTUDbJP3bDXi0ajuL8kq9dcGESsm8-w7YZ1Ld-Ueu5SZfaE-1xwETWgEYbBgqy1unYDpx21bOCifnyVJLeJlBbQbQzIWHs19dcnKjWGpDv_XH0XWj9sPNL_xpk92MBiH7bXhAQPoNv5dMwroqdzJ3xgbURNn0sb-L-8EgdUhpQFuR-k3WuiCkP6afJAXAqWrBWwSVWS4c1g0IJheveYdLzlPwnehPmi8pjiRkV-bmJhqEaZoXAE04zGmlGeZxFFiRjbs5oZCz6CaRWy3KAWOjQ0p_wQmkVZ4BGQADlKwzKpQyl4ZKLAPihNYJ_hTLoK4DG0nGPGbwspjPHKJyd_2E9hy7nfJWGpPINmNZvjOWzqj2ryPruoN_ALG-GZng
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JSwMxFA5aBfXiVnE3B69TJ9ssRx0dWpyWQlvprWSSN1qoM1Kngv_eZNpqPXjwFgIh8B7Jl7d8XxC6FjzjlAN3pMhMgMJJ6qShkI6BOuZKK9BSNcg-JX6nEwyHYXdBVq-4MABQNZ9Bww6rWr4u1MymyswJdxlnPFhHG4Jz6s7pWsuL17PqUYsWLuKGN1F0HwlhIN1EgZQ2lot_faNSoUi8-8_991D9h4-Hu99Is4_WID9AOytSgocoaX5a7hVWk5mVPjBzWE6eCxP6v7xiC1UaFzlu9eLkFstc424ctbFNwuKVEjYuCzy46_XqaBA_9KOms_gpwRlTl5cOlUzLwM10yDVRIFLglmKaklBRwrI0ICAAQnNaU23gh1MlfZppUFz5mmSEHaFaXuRwjLAHDISmqVC-4CzQgWeelNozD3EqbA3wBNWtYUZvczGM0dImp3_MX6GtZr-djJJW5_EMbVtX2JQsEeeoVk5ncIE21Uc5fp9eVs78AkuOnOU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Chinese+Control+and+Decision+Conference&rft.atitle=Hybrid+clustering+algorithm+based+on+ISFLA+and+PFCM+with+application+to+UBSS&rft.au=Kui%2C+Xia&rft.au=Wei%2C+Li&rft.au=Jing%2C+Wang&rft.au=Xinrui%2C+Hong&rft.date=2022-08-15&rft.pub=IEEE&rft.eissn=1948-9447&rft.spage=462&rft.epage=468&rft_id=info:doi/10.1109%2FCCDC55256.2022.10034348&rft.externalDocID=10034348