Hybrid clustering algorithm based on ISFLA and PFCM with application to UBSS
To improve the sensitivity to initial values, poor robustness, and easy to fall into local extreme values in traditional fuzzy clustering algorithms, a hybrid clustering algorithm coming to the improved Shuffled Frog Leaping Algorithm (SFLA) and Possibility fuzzy C-means (PFCM) clustering algorithm...
Gespeichert in:
| Veröffentlicht in: | Chinese Control and Decision Conference S. 462 - 468 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
15.08.2022
|
| Schlagworte: | |
| ISSN: | 1948-9447 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | To improve the sensitivity to initial values, poor robustness, and easy to fall into local extreme values in traditional fuzzy clustering algorithms, a hybrid clustering algorithm coming to the improved Shuffled Frog Leaping Algorithm (SFLA) and Possibility fuzzy C-means (PFCM) clustering algorithm was proposed and applied to the problem of underdetermined blind source separation. The algorithm uses the optimization process of SFLA to replace the iterative process of PFCM's gradient descent method. The improved SFLA initializes the population through the current optimal reverse learning mechanism and adds a Gaussian random walk strategy into the local search of subgroups, which effectively improves the optimization ability of the algorithm. The simulation results show that the ISFLA algorithm has a better optimization effect compared with the traditional Shuffled Frog Leaping Algorithm and the Particle Swarm Optimization algorithm. Meanwhile, the algorithm after fusion improves the robustness, clustering accuracy, and searching ability of the fuzzy clustering algorithm, and successfully realizes the estimation of the underdetermined mixed matrix. The estimation accuracy and stability of the proposed algorithm are high. |
|---|---|
| AbstractList | To improve the sensitivity to initial values, poor robustness, and easy to fall into local extreme values in traditional fuzzy clustering algorithms, a hybrid clustering algorithm coming to the improved Shuffled Frog Leaping Algorithm (SFLA) and Possibility fuzzy C-means (PFCM) clustering algorithm was proposed and applied to the problem of underdetermined blind source separation. The algorithm uses the optimization process of SFLA to replace the iterative process of PFCM's gradient descent method. The improved SFLA initializes the population through the current optimal reverse learning mechanism and adds a Gaussian random walk strategy into the local search of subgroups, which effectively improves the optimization ability of the algorithm. The simulation results show that the ISFLA algorithm has a better optimization effect compared with the traditional Shuffled Frog Leaping Algorithm and the Particle Swarm Optimization algorithm. Meanwhile, the algorithm after fusion improves the robustness, clustering accuracy, and searching ability of the fuzzy clustering algorithm, and successfully realizes the estimation of the underdetermined mixed matrix. The estimation accuracy and stability of the proposed algorithm are high. |
| Author | Xinrui, Hong Kui, Xia Wei, Li Jing, Wang |
| Author_xml | – sequence: 1 givenname: Xia surname: Kui fullname: Kui, Xia email: 1109371336@qq.com organization: Anhui Polytechnic University,Anhui Key Laboratory of Detection Technology and Energy Saving Devices,Wuhu,241000 – sequence: 2 givenname: Li surname: Wei fullname: Wei, Li email: liwei@ahpu.edu.cn organization: Anhui Polytechnic University,Anhui Key Laboratory of Detection Technology and Energy Saving Devices,Wuhu,241000 – sequence: 3 givenname: Wang surname: Jing fullname: Jing, Wang organization: Anhui Polytechnic University,Anhui Key Laboratory of Detection Technology and Energy Saving Devices,Wuhu,241000 – sequence: 4 givenname: Hong surname: Xinrui fullname: Xinrui, Hong organization: Anhui Polytechnic University,Anhui Key Laboratory of Detection Technology and Energy Saving Devices,Wuhu,241000 |
| BookMark | eNo1j91KwzAYQKMouE7fQDAv0Jr_JpczWjeoKNRdjzT5OiNdO9qK7O0tqFfn4sCBk6CLru8AoTtKMkqJubf20UrJpMoYYSyjhHDBhT5DCVVKilwbZc7RghqhUyNEfoWScfwkRClOyAKV61M9xIB9-zVOMMRuj12774c4fRxw7UYIuO_wpirKFXZdwG-FfcHfs8XueGyjd1Oc_dTj7UNVXaPLxrUj3PxxibbF07tdp-Xr88auyjQyIqaUOR6cJk0wIlAPsgaRGyVqajyjvKk1BQlgiNB1MDOYdzlrAnjh80Abypfo9rcbAWB3HOLBDafd_zr_ASb7T4k |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/CCDC55256.2022.10034348 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISBN | 1665478969 9781665478960 |
| EISSN | 1948-9447 |
| EndPage | 468 |
| ExternalDocumentID | 10034348 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Anhui Polytechnic University funderid: 10.13039/501100014762 |
| GroupedDBID | 29B 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI M43 OCL RIE RIL |
| ID | FETCH-LOGICAL-i204t-2a3da80fd94d1ce5be47964b19c213fb81e5ee9048bd99042ca72fdec4c7d1f13 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000972039300072&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:58:31 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i204t-2a3da80fd94d1ce5be47964b19c213fb81e5ee9048bd99042ca72fdec4c7d1f13 |
| PageCount | 7 |
| ParticipantIDs | ieee_primary_10034348 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-Aug.-15 |
| PublicationDateYYYYMMDD | 2022-08-15 |
| PublicationDate_xml | – month: 08 year: 2022 text: 2022-Aug.-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | Chinese Control and Decision Conference |
| PublicationTitleAbbrev | CCDC |
| PublicationYear | 2022 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0066300 |
| Score | 1.8036903 |
| Snippet | To improve the sensitivity to initial values, poor robustness, and easy to fall into local extreme values in traditional fuzzy clustering algorithms, a hybrid... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 462 |
| SubjectTerms | Blind source separation Clustering algorithms Estimation Gaussian random walk Improved Shuffled Frog Leaping Algorithm Learning systems Mixed matrix estimation Probability fuzzy C-mean Robustness Simulation Sociology Underdetermined Blind Source Separation |
| Title | Hybrid clustering algorithm based on ISFLA and PFCM with application to UBSS |
| URI | https://ieeexplore.ieee.org/document/10034348 |
| WOSCitedRecordID | wos000972039300072&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA62eNCLr4pvcvC6Nc_dzVFXi0IthVroreQxq4W6K3Ur-O9Ntq3WgwdvYSAEJkw-ZibfNwhd-pyBKMdk5BiHSJg8jrTx8ShBWmHTmAhTi7h2k14vHY1Uf0lWr7kwAFB_PoN2WNa9fFfaeSiV-QgnXHCRNlAjSeIFWWv17MZBO2r5gYsSdZVlt5mUHtB9DshYe7X11xCVGkM6O_88fRe1fth4uP-NM3toA4p9tL0mJHiAuvefgXmF7XQehA-8Devpc-kT_5dXHIDK4bLAD4NO9xrrwuF-J3vEoQSL1xrYuCrx8GYwaKFh5-4pu4-WcxKiCSOiipjmTqckd0o4akEaEIFgaqiyjPLcpBQkgPKxapwHH8GsTljuwF9G4mhO-SFqFmUBRwjHTGtCIU8IsULRXDG_h4pEJ9woBfwYtYJjxm8LKYzxyicnf9hP0VZwfyjCUnmGmtVsDudo035Uk_fZRX2BX4QWmtY |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA86BfXi18Rvc_BaTdJkbY5aLRt2Y7ANdhtp8qqD2crsBP97k27TefDgLTwIgTxefryP3y8IXducgUjDhGeYDx5Ps4anUhuPAoTmOmwQnlYirknQ6YTDoewuyOoVFwYAquEzuHHLqpdvCj1zpTIb4cTnPg_X0YbgnJE5XWv58DacetRihIsSeRtFD5EQFtJtFsjYzXLzr29UKhSJd_95_h6q__DxcPcbafbRGuQHaGdFSvAQJc1Px73CejJz0gfWhtXkubCp_8srdlBlcJHjVi9O7rDKDe7GURu7IixeaWHjssCD-16vjgbxYz9qeoufErwxI7z0mPKNCklmJDdUg0iBO4ppSqVm1M_SkIIAkDZaU2PhhzOtApYZsO4IDM2of4RqeZHDMcINphShkAWEaC5pJpndQ3mgAj-VEvwTVHcXM3qbi2GMlndy-of9Cm01--1klLQ6T2do27nClWSpOEe1cjqDC7SpP8rx-_SycuYXw4ueHQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Chinese+Control+and+Decision+Conference&rft.atitle=Hybrid+clustering+algorithm+based+on+ISFLA+and+PFCM+with+application+to+UBSS&rft.au=Kui%2C+Xia&rft.au=Wei%2C+Li&rft.au=Jing%2C+Wang&rft.au=Xinrui%2C+Hong&rft.date=2022-08-15&rft.pub=IEEE&rft.eissn=1948-9447&rft.spage=462&rft.epage=468&rft_id=info:doi/10.1109%2FCCDC55256.2022.10034348&rft.externalDocID=10034348 |