Accel-GCN: High-Performance GPU Accelerator Design for Graph Convolution Networks

Graph Convolutional Networks (GCNs) are pivotal in extracting latent information from graph data across various domains, yet their acceleration on mainstream GPUs is challenged by workload imbalance and memory access irregularity. To address these challenges, we present Accel-GCN, a GPU accelerator...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Digest of technical papers - IEEE/ACM International Conference on Computer-Aided Design s. 01 - 09
Hlavní autoři: Xie, Xi, Peng, Hongwu, Hasan, Amit, Huang, Shaoyi, Zhao, Jiahui, Fang, Haowen, Zhang, Wei, Geng, Tong, Khan, Omer, Ding, Caiwen
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 28.10.2023
Témata:
ISSN:1558-2434
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Graph Convolutional Networks (GCNs) are pivotal in extracting latent information from graph data across various domains, yet their acceleration on mainstream GPUs is challenged by workload imbalance and memory access irregularity. To address these challenges, we present Accel-GCN, a GPU accelerator architecture for GCNs. The design of Accel-GCN encompasses: (i) a lightweight degree sorting stage to group nodes with similar degree; (ii) a block-level partition strategy that dynamically adjusts warp workload sizes, enhancing shared memory locality and workload balance, and reducing metadata overhead compared to designs like GNNAdvisor; (iii) a combined warp strategy that improves memory coalescing and computational parallelism in the column dimension of dense matrices. Utilizing these principles, we formulate a kernel for SpMM in GCNs that employs block-level partitioning and combined warp strategy. This approach augments performance and multi-level memory efficiency and optimizes memory bandwidth by exploiting memory coalescing and alignment. Evaluation of Accel-GCN across 18 benchmark graphs reveals that it outperforms cuSPARSE, GNNAdvisor, and graph-BLAST by factors of 1.17×, 1.86×, and 2.94× respectively. The results underscore Accel-GCN as an effective solution for enhancing GCN computational efficiency. The implementation can be found on Github*.
AbstractList Graph Convolutional Networks (GCNs) are pivotal in extracting latent information from graph data across various domains, yet their acceleration on mainstream GPUs is challenged by workload imbalance and memory access irregularity. To address these challenges, we present Accel-GCN, a GPU accelerator architecture for GCNs. The design of Accel-GCN encompasses: (i) a lightweight degree sorting stage to group nodes with similar degree; (ii) a block-level partition strategy that dynamically adjusts warp workload sizes, enhancing shared memory locality and workload balance, and reducing metadata overhead compared to designs like GNNAdvisor; (iii) a combined warp strategy that improves memory coalescing and computational parallelism in the column dimension of dense matrices. Utilizing these principles, we formulate a kernel for SpMM in GCNs that employs block-level partitioning and combined warp strategy. This approach augments performance and multi-level memory efficiency and optimizes memory bandwidth by exploiting memory coalescing and alignment. Evaluation of Accel-GCN across 18 benchmark graphs reveals that it outperforms cuSPARSE, GNNAdvisor, and graph-BLAST by factors of 1.17×, 1.86×, and 2.94× respectively. The results underscore Accel-GCN as an effective solution for enhancing GCN computational efficiency. The implementation can be found on Github*.
Author Zhang, Wei
Fang, Haowen
Khan, Omer
Hasan, Amit
Zhao, Jiahui
Huang, Shaoyi
Ding, Caiwen
Xie, Xi
Peng, Hongwu
Geng, Tong
Author_xml – sequence: 1
  givenname: Xi
  surname: Xie
  fullname: Xie, Xi
  email: xi.xie@uconn.edu
  organization: University of Connecticut
– sequence: 2
  givenname: Hongwu
  surname: Peng
  fullname: Peng, Hongwu
  email: hongwu.peng@uconn.edu
  organization: University of Connecticut
– sequence: 3
  givenname: Amit
  surname: Hasan
  fullname: Hasan, Amit
  email: amit.hasan@uconn.edu
  organization: University of Connecticut
– sequence: 4
  givenname: Shaoyi
  surname: Huang
  fullname: Huang, Shaoyi
  email: shaoyi.huang@uconn.edu
  organization: University of Connecticut
– sequence: 5
  givenname: Jiahui
  surname: Zhao
  fullname: Zhao, Jiahui
  email: jiahui.zhao@uconn.edu
  organization: University of Connecticut
– sequence: 6
  givenname: Haowen
  surname: Fang
  fullname: Fang, Haowen
  email: haowfang@gmail.com
  organization: University of Connecticut
– sequence: 7
  givenname: Wei
  surname: Zhang
  fullname: Zhang, Wei
  email: wei.13.zhang@uconn.edu
  organization: University of Connecticut
– sequence: 8
  givenname: Tong
  surname: Geng
  fullname: Geng, Tong
  email: tgeng@ur.rochester.edu
  organization: University of Rochester
– sequence: 9
  givenname: Omer
  surname: Khan
  fullname: Khan, Omer
  email: khan@uconn.edu
  organization: University of Connecticut
– sequence: 10
  givenname: Caiwen
  surname: Ding
  fullname: Ding, Caiwen
  email: caiwen.ding@uconn.edu
  organization: University of Connecticut
BookMark eNo1UNtOwkAUXI0mAvIHPuwPFM_e2q5vTdFCQhATeSbb7Smsli7ZVo1_b709TSZzyWTG5KL1LRJCGcwYA327zPNsrhKhYcaBixkDwUXC-RmZ6kSnQg2cc6XOyYgplUZcCnlFxl33AjAE0nhEnjJrsYmKfH1HF25_iDYYah-OprVIi82W_ugYTO8DnWPn9i0ddFoEczrQ3LfvvnnrnW_pGvsPH167a3JZm6bD6R9OyPbh_jlfRKvHYplnq8hxkH3EtapSURmwIFOrjTFCVjEzKEvUXIuy-l5uK4hLKflgsQaZrTWWEDMrQUzIzW-vQ8TdKbijCZ-7_wvEF9QQUkU
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICCAD57390.2023.10323722
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9798350322255
EISSN 1558-2434
EndPage 09
ExternalDocumentID 10323722
Genre orig-research
GrantInformation_xml – fundername: Semiconductor Research Corporation (SRC)
  funderid: 10.13039/100000028
GroupedDBID 6IE
6IF
6IH
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
FEDTE
IEGSK
IJVOP
M43
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i204t-295d83da0c048c9aaa34d61ae4be9293bd2255cd06b44248ccae1cf9eb061c403
IEDL.DBID RIE
ISICitedReferencesCount 12
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001116715100065&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:22:16 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i204t-295d83da0c048c9aaa34d61ae4be9293bd2255cd06b44248ccae1cf9eb061c403
PageCount 9
ParticipantIDs ieee_primary_10323722
PublicationCentury 2000
PublicationDate 2023-Oct.-28
PublicationDateYYYYMMDD 2023-10-28
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-Oct.-28
  day: 28
PublicationDecade 2020
PublicationTitle Digest of technical papers - IEEE/ACM International Conference on Computer-Aided Design
PublicationTitleAbbrev ICCAD
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0020286
Score 2.4427855
Snippet Graph Convolutional Networks (GCNs) are pivotal in extracting latent information from graph data across various domains, yet their acceleration on mainstream...
SourceID ieee
SourceType Publisher
StartPage 01
SubjectTerms Accelerator architectures
Bandwidth
Benchmark testing
Convolution
GPUs
Graph Convolution Network
Graphics processing units
Memory management
parallel computing
Parallel processing
sparse matrix multiplication (SpMM)
Title Accel-GCN: High-Performance GPU Accelerator Design for Graph Convolution Networks
URI https://ieeexplore.ieee.org/document/10323722
WOSCitedRecordID wos001116715100065&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagYoCFVxFveWB169quE7OhQgtLFCQqdav8uEiVUIv6-v2c3RcMDCxWFCeyYuf8ne3vuyPkgTsdkc4zJ7FQJqDNtVxg6Ll6V1XCClmlZBNZUeSDgSnXYvWkhQGARD6DRrxMZ_lh4hdxq6wZg7_JTOCMu59leiXW2q6uECj1hqrDTfOtg5_SznBJ34gZwhubd39lUUkg0j3-Z_MnpL6T49FyCzSnZA_GZ-ToRyTBc_L-5D18sl6neKSRusHKnSCA9so-TfWQztTpc2JtUKynvRivmmI7y_UvSIsVL3xWJ_3uy0fnla2zJbCR4GrOhGmHXAbLPRqlN9ZaqYJuWVAO0AeSLqDptn3g2ikl8BFvoeUrAw4h3SsuL0htPBnDJaE2d14bLCUHNHCFXoOTGn098A40ZFekHntn-LUKiDHcdMz1H_dvyGEcgzjli_yW1ObTBdyRA7-cj2bT-zSM30a6nZ0
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELVQQQIubEXs-MA1rWs7GzdU6CJKFKRW6q3yMpEqVS3q9v2M3Q0OHLhYUZwoyTiTN47fmyHkienIIZ0JtMBGphZ9rqZtgJGr0UXBFReFLzYRZ1nS76f5WqzutTAA4MlnUHGbfi3fTszC_SqruuRvIub4xd0PpeRsJdfazq8QKqMNWYel1XYdHyaMcVJfcTXCK5uzf9VR8TDSOPnnDZyS8k6QR_Mt1JyRPRifk-MfuQQvyOeLMTAKmvXsmTryRpDvJAG0mfeo7we_qk5fPW-DYj9tuozVFK-zXL-ENFsxw2dl0mu8deutYF0vIRhyJucBT0ObCKuYQbc0qVJKSBvVFEgNGAUJbdF5Q2NZpNF6eIhRUDNFChpB3UgmLklpPBnDFaEq0SZKsRUM0MUlxg1aRBjtgdEQQXxNys46g69VSozBxjA3f-x_JIet7kdn0Gln77fkyI2HAwCe3JHSfLqAe3JglvPhbPrgh_Qbqm2g5A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Digest+of+technical+papers+-+IEEE%2FACM+International+Conference+on+Computer-Aided+Design&rft.atitle=Accel-GCN%3A+High-Performance+GPU+Accelerator+Design+for+Graph+Convolution+Networks&rft.au=Xie%2C+Xi&rft.au=Peng%2C+Hongwu&rft.au=Hasan%2C+Amit&rft.au=Huang%2C+Shaoyi&rft.date=2023-10-28&rft.pub=IEEE&rft.eissn=1558-2434&rft.spage=01&rft.epage=09&rft_id=info:doi/10.1109%2FICCAD57390.2023.10323722&rft.externalDocID=10323722