Equal Confusion Fairness: Measuring Group-Based Disparities in Automated Decision Systems
As artificial intelligence plays an increasingly substantial role in decisions affecting humans and society, the accountability of automated decision systems has been receiving increasing attention from researchers and practitioners. Fairness, which is concerned with eliminating unjust treatment and...
Uloženo v:
| Vydáno v: | IEEE ... International Conference on Data Mining workshops s. 137 - 146 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.11.2022
|
| Témata: | |
| ISSN: | 2375-9259 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | As artificial intelligence plays an increasingly substantial role in decisions affecting humans and society, the accountability of automated decision systems has been receiving increasing attention from researchers and practitioners. Fairness, which is concerned with eliminating unjust treatment and discrimination against individuals or sensitive groups, is a critical aspect of accountability. Yet, for evaluating fairness, there is a plethora of fairness metrics in the literature that employ different perspectives and assumptions that are often incompatible. This work focuses on group fairness. Most group fairness metrics desire a parity between selected statistics computed from confusion matrices belonging to different sensitive groups. Generalizing this intuition, this paper proposes a new equal confusion fairness test to check an automated decision system for fairness and a new confusion parity error to quantify the extent of any unfairness. To further analyze the source of potential unfairness, an appropriate post hoc analysis methodology is also presented. The usefulness of the test, metric, and post hoc analysis is demonstrated via a case study on the controversial case of COMPAS, an automated decision system employed in the US to assist judges with assessing recidivism risks. Overall, the methods and metrics provided here may assess automated decision systems' fairness as part of a more extensive accountability assessment, such as those based on the system accountability benchmark. |
|---|---|
| AbstractList | As artificial intelligence plays an increasingly substantial role in decisions affecting humans and society, the accountability of automated decision systems has been receiving increasing attention from researchers and practitioners. Fairness, which is concerned with eliminating unjust treatment and discrimination against individuals or sensitive groups, is a critical aspect of accountability. Yet, for evaluating fairness, there is a plethora of fairness metrics in the literature that employ different perspectives and assumptions that are often incompatible. This work focuses on group fairness. Most group fairness metrics desire a parity between selected statistics computed from confusion matrices belonging to different sensitive groups. Generalizing this intuition, this paper proposes a new equal confusion fairness test to check an automated decision system for fairness and a new confusion parity error to quantify the extent of any unfairness. To further analyze the source of potential unfairness, an appropriate post hoc analysis methodology is also presented. The usefulness of the test, metric, and post hoc analysis is demonstrated via a case study on the controversial case of COMPAS, an automated decision system employed in the US to assist judges with assessing recidivism risks. Overall, the methods and metrics provided here may assess automated decision systems' fairness as part of a more extensive accountability assessment, such as those based on the system accountability benchmark. |
| Author | Kakadiaris, Ioannis A. Gursoy, Furkan |
| Author_xml | – sequence: 1 givenname: Furkan surname: Gursoy fullname: Gursoy, Furkan email: fgursoy@uh.edu organization: University of Houston,Computational Biomedicine Lab,Dept. of Computer Science,Houston,TX,USA – sequence: 2 givenname: Ioannis A. surname: Kakadiaris fullname: Kakadiaris, Ioannis A. email: ioannisk@uh.edu organization: University of Houston,Computational Biomedicine Lab,Dept. of Computer Science,Houston,TX,USA |
| BookMark | eNotkMtOwzAQRQ0CiVL6ByD5B1LGYzuO2ZX0QaVWLAAhVpWTTJBR65Q4WfTvWx6ruzhHZ3Gv2UVoAjF2J2AsBNj7ZT5dv-sMMB0jII4BAM0ZG1ljM6lBqhSsOGcDlEYnFrW9YqMYv06asFJZiwP2Mfvu3ZbnTaj76JvA5863gWJ84GtysW99-OSLtun3yaOLVPGpj3vX-s5T5D7wSd81O9f9ACr9b-HlEDvaxRt2WbttpNH_DtnbfPaaPyWr58Uyn6wSj6C6BA1VGaisKHSpC0GVqEtFBoUylToZ6JRQypY2dUo7wNqiTBFkYURGOiU5ZLd_XU9Em33rd649bMTpCiszLY_DOlVV |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/ICDMW58026.2022.00027 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISBN | 9798350346091 |
| EISSN | 2375-9259 |
| EndPage | 146 |
| ExternalDocumentID | 10029385 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Science Foundation grantid: CCF-2131504 funderid: 10.13039/100000001 |
| GroupedDBID | 6IE 6IF 6IH 6IK 6IL 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI OCL RIE RIL RNS |
| ID | FETCH-LOGICAL-i204t-27ed8048bb5c5b1ed1fc4e72147d42042a41449c96a45a02f9236203b718e56e3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000971492200019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:48:45 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i204t-27ed8048bb5c5b1ed1fc4e72147d42042a41449c96a45a02f9236203b718e56e3 |
| PageCount | 10 |
| ParticipantIDs | ieee_primary_10029385 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-Nov. |
| PublicationDateYYYYMMDD | 2022-11-01 |
| PublicationDate_xml | – month: 11 year: 2022 text: 2022-Nov. |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE ... International Conference on Data Mining workshops |
| PublicationTitleAbbrev | ICDMW |
| PublicationYear | 2022 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0001934992 |
| Score | 1.8477639 |
| Snippet | As artificial intelligence plays an increasingly substantial role in decisions affecting humans and society, the accountability of automated decision systems... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 137 |
| SubjectTerms | algorithm audit algorithmic accountability Artificial intelligence automated decision systems Benchmark testing Conferences Data mining fairness Measurement |
| Title | Equal Confusion Fairness: Measuring Group-Based Disparities in Automated Decision Systems |
| URI | https://ieeexplore.ieee.org/document/10029385 |
| WOSCitedRecordID | wos000971492200019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELVoxcBUPor4lgdWU8exk5gNSisYWnUAUabKsS9SlhS1Cb-fs5tSMTCwxYmsSD7Z794l7x4ht1IKDhqARU5qJhFUmDFOMZlzm5sCCUdSBLOJdDrN5nM9a8XqQQsDAOHnM7jzl-FbvlvaxpfKBr5dqI4z1SGdNE03Yq1dQUXHmL2LVqUTcT14GT5N3lWGLAN5oAiNOcVvF5UAIuPeP19_SPo7OR6d_QDNEdmD6pj0tn4MtN2eJ-Rj5CWS1M9qfBGMjk258kfZPZ2EUiDOpqHYxB4RvBx9KtfehND3VKVlRR-aeokJrH_QOu_QtqF5n7yNR6_DZ9ZaJ7BScFkzkYLLcHPmubIqj8BFhZWQelMih9GRwkhkUtrqxEhluCgwz0sEj3OEKlAJxKekWy0rOCOUR7bgkGpuFdJowXMnOA5clGljMNk6J32_VIvPTXeMxXaVLv64f0kOfDQ2er4r0q1XDVyTfftVl-vVTYjpNzQXoeg |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELWgIMFUPor4xgOrqePYScwGtFUr2qpDEWWqHNuRsqSoTfj9nN2UioGBLR-yEvnkvLtz3nsI3XPOqJXWksBwSTiAClHKCMJTqlOVQcERZd5sIh6Pk9lMTmqyuufCWGv9z2f2wR36vXyz0JVrlbWdXKgME7GL9gQ8JFjTtbYtFRlC_s5qnk5AZXvw0hm9iwTqDKgEmZfmZL99VDyM9Jr_fIEj1NoS8vDkB2qO0Y4tTlBz48iA6wV6ij66jiSJ3ajKtcFwT-VL9zF7xCPfDITR2LebyDPAl8GdfOVsCJ2qKs4L_FSVC0hh3Y3aewfXkuYt9NbrTl_6pDZPIDmjvCQstiaB5ZmmQos0sCbINLexsyUyEB_OFIdaSmoZKS4UZRlkehGjYQpgZUVkwzPUKBaFPUeYBjqjNpZUCyikGU0No3BigkQqBenWBWq5qZp_rvUx5ptZuvzj-h066E9Hw_lwMH69QocuMmt23zVqlMvK3qB9_VXmq-Wtj-830H2lLw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE+...+International+Conference+on+Data+Mining+workshops&rft.atitle=Equal+Confusion+Fairness%3A+Measuring+Group-Based+Disparities+in+Automated+Decision+Systems&rft.au=Gursoy%2C+Furkan&rft.au=Kakadiaris%2C+Ioannis+A.&rft.date=2022-11-01&rft.pub=IEEE&rft.eissn=2375-9259&rft.spage=137&rft.epage=146&rft_id=info:doi/10.1109%2FICDMW58026.2022.00027&rft.externalDocID=10029385 |