Equal Confusion Fairness: Measuring Group-Based Disparities in Automated Decision Systems

As artificial intelligence plays an increasingly substantial role in decisions affecting humans and society, the accountability of automated decision systems has been receiving increasing attention from researchers and practitioners. Fairness, which is concerned with eliminating unjust treatment and...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE ... International Conference on Data Mining workshops s. 137 - 146
Hlavní autoři: Gursoy, Furkan, Kakadiaris, Ioannis A.
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.11.2022
Témata:
ISSN:2375-9259
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract As artificial intelligence plays an increasingly substantial role in decisions affecting humans and society, the accountability of automated decision systems has been receiving increasing attention from researchers and practitioners. Fairness, which is concerned with eliminating unjust treatment and discrimination against individuals or sensitive groups, is a critical aspect of accountability. Yet, for evaluating fairness, there is a plethora of fairness metrics in the literature that employ different perspectives and assumptions that are often incompatible. This work focuses on group fairness. Most group fairness metrics desire a parity between selected statistics computed from confusion matrices belonging to different sensitive groups. Generalizing this intuition, this paper proposes a new equal confusion fairness test to check an automated decision system for fairness and a new confusion parity error to quantify the extent of any unfairness. To further analyze the source of potential unfairness, an appropriate post hoc analysis methodology is also presented. The usefulness of the test, metric, and post hoc analysis is demonstrated via a case study on the controversial case of COMPAS, an automated decision system employed in the US to assist judges with assessing recidivism risks. Overall, the methods and metrics provided here may assess automated decision systems' fairness as part of a more extensive accountability assessment, such as those based on the system accountability benchmark.
AbstractList As artificial intelligence plays an increasingly substantial role in decisions affecting humans and society, the accountability of automated decision systems has been receiving increasing attention from researchers and practitioners. Fairness, which is concerned with eliminating unjust treatment and discrimination against individuals or sensitive groups, is a critical aspect of accountability. Yet, for evaluating fairness, there is a plethora of fairness metrics in the literature that employ different perspectives and assumptions that are often incompatible. This work focuses on group fairness. Most group fairness metrics desire a parity between selected statistics computed from confusion matrices belonging to different sensitive groups. Generalizing this intuition, this paper proposes a new equal confusion fairness test to check an automated decision system for fairness and a new confusion parity error to quantify the extent of any unfairness. To further analyze the source of potential unfairness, an appropriate post hoc analysis methodology is also presented. The usefulness of the test, metric, and post hoc analysis is demonstrated via a case study on the controversial case of COMPAS, an automated decision system employed in the US to assist judges with assessing recidivism risks. Overall, the methods and metrics provided here may assess automated decision systems' fairness as part of a more extensive accountability assessment, such as those based on the system accountability benchmark.
Author Kakadiaris, Ioannis A.
Gursoy, Furkan
Author_xml – sequence: 1
  givenname: Furkan
  surname: Gursoy
  fullname: Gursoy, Furkan
  email: fgursoy@uh.edu
  organization: University of Houston,Computational Biomedicine Lab,Dept. of Computer Science,Houston,TX,USA
– sequence: 2
  givenname: Ioannis A.
  surname: Kakadiaris
  fullname: Kakadiaris, Ioannis A.
  email: ioannisk@uh.edu
  organization: University of Houston,Computational Biomedicine Lab,Dept. of Computer Science,Houston,TX,USA
BookMark eNotkMtOwzAQRQ0CiVL6ByD5B1LGYzuO2ZX0QaVWLAAhVpWTTJBR65Q4WfTvWx6ruzhHZ3Gv2UVoAjF2J2AsBNj7ZT5dv-sMMB0jII4BAM0ZG1ljM6lBqhSsOGcDlEYnFrW9YqMYv06asFJZiwP2Mfvu3ZbnTaj76JvA5863gWJ84GtysW99-OSLtun3yaOLVPGpj3vX-s5T5D7wSd81O9f9ACr9b-HlEDvaxRt2WbttpNH_DtnbfPaaPyWr58Uyn6wSj6C6BA1VGaisKHSpC0GVqEtFBoUylToZ6JRQypY2dUo7wNqiTBFkYURGOiU5ZLd_XU9Em33rd649bMTpCiszLY_DOlVV
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICDMW58026.2022.00027
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9798350346091
EISSN 2375-9259
EndPage 146
ExternalDocumentID 10029385
Genre orig-research
GrantInformation_xml – fundername: National Science Foundation
  grantid: CCF-2131504
  funderid: 10.13039/100000001
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
OCL
RIE
RIL
RNS
ID FETCH-LOGICAL-i204t-27ed8048bb5c5b1ed1fc4e72147d42042a41449c96a45a02f9236203b718e56e3
IEDL.DBID RIE
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000971492200019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:48:45 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i204t-27ed8048bb5c5b1ed1fc4e72147d42042a41449c96a45a02f9236203b718e56e3
PageCount 10
ParticipantIDs ieee_primary_10029385
PublicationCentury 2000
PublicationDate 2022-Nov.
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-Nov.
PublicationDecade 2020
PublicationTitle IEEE ... International Conference on Data Mining workshops
PublicationTitleAbbrev ICDMW
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001934992
Score 1.8477639
Snippet As artificial intelligence plays an increasingly substantial role in decisions affecting humans and society, the accountability of automated decision systems...
SourceID ieee
SourceType Publisher
StartPage 137
SubjectTerms algorithm audit
algorithmic accountability
Artificial intelligence
automated decision systems
Benchmark testing
Conferences
Data mining
fairness
Measurement
Title Equal Confusion Fairness: Measuring Group-Based Disparities in Automated Decision Systems
URI https://ieeexplore.ieee.org/document/10029385
WOSCitedRecordID wos000971492200019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELVoxcBUPor4lgdWU8exk5gNSisYWnUAUabKsS9SlhS1Cb-fs5tSMTCwxYmsSD7Z794l7x4ht1IKDhqARU5qJhFUmDFOMZlzm5sCCUdSBLOJdDrN5nM9a8XqQQsDAOHnM7jzl-FbvlvaxpfKBr5dqI4z1SGdNE03Yq1dQUXHmL2LVqUTcT14GT5N3lWGLAN5oAiNOcVvF5UAIuPeP19_SPo7OR6d_QDNEdmD6pj0tn4MtN2eJ-Rj5CWS1M9qfBGMjk258kfZPZ2EUiDOpqHYxB4RvBx9KtfehND3VKVlRR-aeokJrH_QOu_QtqF5n7yNR6_DZ9ZaJ7BScFkzkYLLcHPmubIqj8BFhZWQelMih9GRwkhkUtrqxEhluCgwz0sEj3OEKlAJxKekWy0rOCOUR7bgkGpuFdJowXMnOA5clGljMNk6J32_VIvPTXeMxXaVLv64f0kOfDQ2er4r0q1XDVyTfftVl-vVTYjpNzQXoeg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELWgIMFUPor4xgOrqePYScwGtFUr2qpDEWWqHNuRsqSoTfj9nN2UioGBLR-yEvnkvLtz3nsI3XPOqJXWksBwSTiAClHKCMJTqlOVQcERZd5sIh6Pk9lMTmqyuufCWGv9z2f2wR36vXyz0JVrlbWdXKgME7GL9gQ8JFjTtbYtFRlC_s5qnk5AZXvw0hm9iwTqDKgEmZfmZL99VDyM9Jr_fIEj1NoS8vDkB2qO0Y4tTlBz48iA6wV6ij66jiSJ3ajKtcFwT-VL9zF7xCPfDITR2LebyDPAl8GdfOVsCJ2qKs4L_FSVC0hh3Y3aewfXkuYt9NbrTl_6pDZPIDmjvCQstiaB5ZmmQos0sCbINLexsyUyEB_OFIdaSmoZKS4UZRlkehGjYQpgZUVkwzPUKBaFPUeYBjqjNpZUCyikGU0No3BigkQqBenWBWq5qZp_rvUx5ptZuvzj-h066E9Hw_lwMH69QocuMmt23zVqlMvK3qB9_VXmq-Wtj-830H2lLw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE+...+International+Conference+on+Data+Mining+workshops&rft.atitle=Equal+Confusion+Fairness%3A+Measuring+Group-Based+Disparities+in+Automated+Decision+Systems&rft.au=Gursoy%2C+Furkan&rft.au=Kakadiaris%2C+Ioannis+A.&rft.date=2022-11-01&rft.pub=IEEE&rft.eissn=2375-9259&rft.spage=137&rft.epage=146&rft_id=info:doi/10.1109%2FICDMW58026.2022.00027&rft.externalDocID=10029385