MobileOne: An Improved One millisecond Mobile Backbone
Efficient neural network backbones for mobile devices are often optimized for metrics such as FLOPs or parameter count. However, these metrics may not correlate well with latency of the network when deployed on a mobile device. Therefore, we perform extensive analysis of different metrics by deployi...
Gespeichert in:
| Veröffentlicht in: | Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) S. 7907 - 7917 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
01.06.2023
|
| Schlagworte: | |
| ISSN: | 1063-6919 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Efficient neural network backbones for mobile devices are often optimized for metrics such as FLOPs or parameter count. However, these metrics may not correlate well with latency of the network when deployed on a mobile device. Therefore, we perform extensive analysis of different metrics by deploying several mobile-friendly networks on a mobile device. We identify and analyze architectural and optimization bottlenecks in recent efficient neural networks and provide ways to mitigate these bottlenecks. To this end, we design an efficient backbone MobileOne, with variants achieving an inference time under 1 ms on an iPhone12 with 75.9% top-1 accuracy on ImageNet. We show that MobileOne achieves state-of-the-art performance within the efficient architectures while being many times faster on mobile. Our best model obtains similar performance on ImageNet as MobileFormer while being 38×faster. Our model obtains 2.3% better top-1 accuracy on ImageNet than EfficientNet at similar latency. Furthermore, we show that our model generalizes to multiple tasks - image classification, object detection, and semantic segmentation with significant improvements in latency and accuracy as compared to existing efficient architectures when deployed on a mobile device. Code and models are available at https://github.com/apple/ml-mobileone |
|---|---|
| AbstractList | Efficient neural network backbones for mobile devices are often optimized for metrics such as FLOPs or parameter count. However, these metrics may not correlate well with latency of the network when deployed on a mobile device. Therefore, we perform extensive analysis of different metrics by deploying several mobile-friendly networks on a mobile device. We identify and analyze architectural and optimization bottlenecks in recent efficient neural networks and provide ways to mitigate these bottlenecks. To this end, we design an efficient backbone MobileOne, with variants achieving an inference time under 1 ms on an iPhone12 with 75.9% top-1 accuracy on ImageNet. We show that MobileOne achieves state-of-the-art performance within the efficient architectures while being many times faster on mobile. Our best model obtains similar performance on ImageNet as MobileFormer while being 38×faster. Our model obtains 2.3% better top-1 accuracy on ImageNet than EfficientNet at similar latency. Furthermore, we show that our model generalizes to multiple tasks - image classification, object detection, and semantic segmentation with significant improvements in latency and accuracy as compared to existing efficient architectures when deployed on a mobile device. Code and models are available at https://github.com/apple/ml-mobileone |
| Author | Vasu, Pavan Kumar Anasosalu Ranjan, Anurag Zhu, Jeff Gabriel, James Tuzel, Oncel |
| Author_xml | – sequence: 1 givenname: Pavan Kumar Anasosalu surname: Vasu fullname: Vasu, Pavan Kumar Anasosalu organization: Apple – sequence: 2 givenname: James surname: Gabriel fullname: Gabriel, James organization: Apple – sequence: 3 givenname: Jeff surname: Zhu fullname: Zhu, Jeff organization: Apple – sequence: 4 givenname: Oncel surname: Tuzel fullname: Tuzel, Oncel organization: Apple – sequence: 5 givenname: Anurag surname: Ranjan fullname: Ranjan, Anurag organization: Apple |
| BookMark | eNotjt1Kw0AQRldRsNa8QS_2BRJndje7Ge9qsFqoVES9LbvJBFbzUxIRfHsD9eqDw-HwXYuLfuhZiBVChgh0W368vObKKcoUKJ0BOGvOREKOCp2DBlRUnIsFgtWpJaQrkUzTJwBohWipWAj7PITY8r7nO7nu5bY7jsMP13IGsottGyeuhr6WJ03e--orzB9uxGXj24mT_12K983DW_mU7vaP23K9S6MC850qJPLsa29JQTAUDBbaWG3BsSnyJq8UsiMEdqpSFolDDbM9-w2EBvRSrE7dyMyH4xg7P_4eEOa60Vb_AUmrR70 |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/CVPR52729.2023.00764 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences |
| EISBN | 9798350301298 |
| EISSN | 1063-6919 |
| EndPage | 7917 |
| ExternalDocumentID | 10204436 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IH 6IL 6IN AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP OCL RIE RIL RIO |
| ID | FETCH-LOGICAL-i204t-2199aeada6920b49b4183463607e485f5c21e7910e72c2619ebd0da6a69f0bf03 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 204 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001058542608027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:56:31 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i204t-2199aeada6920b49b4183463607e485f5c21e7910e72c2619ebd0da6a69f0bf03 |
| PageCount | 11 |
| ParticipantIDs | ieee_primary_10204436 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-June |
| PublicationDateYYYYMMDD | 2023-06-01 |
| PublicationDate_xml | – month: 06 year: 2023 text: 2023-June |
| PublicationDecade | 2020 |
| PublicationTitle | Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) |
| PublicationTitleAbbrev | CVPR |
| PublicationYear | 2023 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0003211698 |
| Score | 2.6271367 |
| Snippet | Efficient neural network backbones for mobile devices are often optimized for metrics such as FLOPs or parameter count. However, these metrics may not... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 7907 |
| SubjectTerms | Computational modeling Computer architecture Efficient and scalable vision Mobile handsets Neural networks Object detection Performance evaluation Semantic segmentation |
| Title | MobileOne: An Improved One millisecond Mobile Backbone |
| URI | https://ieeexplore.ieee.org/document/10204436 |
| WOSCitedRecordID | wos001058542608027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BxcBUHkW85YHVxU2c2GaDiooBSoWg6lY59lmqkFLUB7-fcxIKCwNbZJ3s6JLzPezvPoAr8ikBg_HcJVZy6aXgOtcZV8Gg0yaTecWfMn5Uw6GeTMyoAatXWBhErC6fYTc-Vmf5fu7WsVRGFp4IKdN8G7aVUjVYa1NQSSmVyY1u4HE9Ya7749FLllD02I0c4bFJduwr8ItEpfIhg_Y_V9-Dzg8aj402fmYftrA8gHYTPrLGOJeHkD_NC7Lx5xJv2G3J6nIBSdAAi-RCs2VMfj2rxdidde_FvMQOvA3uX_sPvKFF4DN6gRWnPcZY-gFsbhJRSFNIMsuq75dCqbOQuaSHisIAVImLCRIWXpA0yQdRBJEeQauk6Y-BpU662H4l0yZIF3raWe9EMDSJt1rYE-hEPUw_6s4X028VnP4xfga7UdX1VapzaK0Wa7yAHfe5mi0Xl9X3-gLqBJSW |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BQYKpPIp444HVxUmcxGaDiqqItlSoVN0qx7GlqlKK-uD3c3ZCYWFgi6yTHV1yvof93Qdwiz7FGitzqkPFKc85oyIRMU2tNFrImCeeP2XUTft9MR7LQQVW91gYY4y_fGaa7tGf5edzvXalMrTwkHEeJduwE3MeBiVca1NSiTCZSaSoAHIBk3et0eAtDjF-bDqWcNcm23UW-EWj4r1Iu_7P9Q-g8YPHI4ONpzmELVMcQb0KIEllnstjSHrzDK38tTD35KEgZcEAJXCAOHqh6dKlvzkpxcij0rNsXpgGvLefhq0OrYgR6BRfYEVxl5EKfwGVyJBlXGYcDdN3_koNF7GNdRiYFAMBk4bapUgmyxlKo7xlmWXRCdQKnP4USKS5dg1YYiEt1zYQWuWaWYmT5EowdQYNp4fJR9n7YvKtgvM_xm9grzPsdSfd5_7LBew7tZcXqy6htlqszRXs6s_VdLm49t_uC9hml90 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%28IEEE+Computer+Society+Conference+on+Computer+Vision+and+Pattern+Recognition.+Online%29&rft.atitle=MobileOne%3A+An+Improved+One+millisecond+Mobile+Backbone&rft.au=Vasu%2C+Pavan+Kumar+Anasosalu&rft.au=Gabriel%2C+James&rft.au=Zhu%2C+Jeff&rft.au=Tuzel%2C+Oncel&rft.date=2023-06-01&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=7907&rft.epage=7917&rft_id=info:doi/10.1109%2FCVPR52729.2023.00764&rft.externalDocID=10204436 |