Quantum Computational Modeling for Affective Assessment in Virtual Reality Systems

This research explores the use of quantum machine learning-more specifically, the Quantum Support Vector Machine (QSVM)-to predict emotional reactions triggered in virtual reality (VR) settings. The study's experimental setup involved provoking different emotional states via VR gameplay element...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2024 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW) s. 277 - 279
Hlavní autoři: Bayro, Allison, Jeong, Heejin
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 16.03.2024
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This research explores the use of quantum machine learning-more specifically, the Quantum Support Vector Machine (QSVM)-to predict emotional reactions triggered in virtual reality (VR) settings. The study's experimental setup involved provoking different emotional states via VR gameplay elements and capturing the physiological signals of participants. These signals were paired with the subjects' self-reported emotions, measured through the Self-Assessment Manikin. The study then employed both conventional Support Vector Machines (SVM) and QSVM to classify the data. Notably, QSVM surpassed the traditional SVM in accurately predicting the levels of arousal and valence, achieving higher precision with a reduced set of features. This enhanced efficiency is likely due to QSVM's superior handling of the intricate patterns in emotional data and the quantum models' more effective computational resource usage. These results hold considerable potential for the field of affective computing within VR environments, indicating the advantageous prospects of quantum machine learning for the domain.
AbstractList This research explores the use of quantum machine learning-more specifically, the Quantum Support Vector Machine (QSVM)-to predict emotional reactions triggered in virtual reality (VR) settings. The study's experimental setup involved provoking different emotional states via VR gameplay elements and capturing the physiological signals of participants. These signals were paired with the subjects' self-reported emotions, measured through the Self-Assessment Manikin. The study then employed both conventional Support Vector Machines (SVM) and QSVM to classify the data. Notably, QSVM surpassed the traditional SVM in accurately predicting the levels of arousal and valence, achieving higher precision with a reduced set of features. This enhanced efficiency is likely due to QSVM's superior handling of the intricate patterns in emotional data and the quantum models' more effective computational resource usage. These results hold considerable potential for the field of affective computing within VR environments, indicating the advantageous prospects of quantum machine learning for the domain.
Author Jeong, Heejin
Bayro, Allison
Author_xml – sequence: 1
  givenname: Allison
  surname: Bayro
  fullname: Bayro, Allison
  email: abayro@asu.edu
  organization: Arizona State University
– sequence: 2
  givenname: Heejin
  surname: Jeong
  fullname: Jeong, Heejin
  email: heejin.jeong@asu.edu
  organization: Arizona State University
BookMark eNotzMtKxDAUgOEIutBxnkAXeYHWk2ubZSleBkbEquNySNsTCbTp0KRC315BV__m478i52EKSMgNg5wxMHeH5lNzJUTOgcscAJQ8I1tTmFIoEIWUBi5J87rYkJaR1tN4WpJNfgp2oM9Tj4MPX9RNM62cwy75b6RVjBjjiCFRH-jBz2n5xQ3awaeVvq0x4RivyYWzQ8Ttfzfk4-H-vX7K9i-Pu7raZ56DTBkztlcWdGELcChapTg6hWhsoaHrhGml7bQrAXqOvC9bzlxXtIDaoLQMxIbc_n09Ih5Psx_tvB4ZKKFlacQPWhhPEw
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/VRW62533.2024.00054
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350374490
EndPage 279
ExternalDocumentID 10536489
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i204t-19ad5a067a70fe3b552ef5ee9a760cc39b4ac6f800d2e2d8b21fc7b0e69e4a103
IEDL.DBID RIE
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001239375400048&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Jun 05 05:40:33 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i204t-19ad5a067a70fe3b552ef5ee9a760cc39b4ac6f800d2e2d8b21fc7b0e69e4a103
PageCount 3
ParticipantIDs ieee_primary_10536489
PublicationCentury 2000
PublicationDate 2024-March-16
PublicationDateYYYYMMDD 2024-03-16
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-March-16
  day: 16
PublicationDecade 2020
PublicationTitle 2024 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW)
PublicationTitleAbbrev VRW
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.885922
Snippet This research explores the use of quantum machine learning-more specifically, the Quantum Support Vector Machine (QSVM)-to predict emotional reactions...
SourceID ieee
SourceType Publisher
StartPage 277
SubjectTerms Affective computing
Computational modeling
Human-centered computing-Human computer interaction (HCI)-HCI design and evaluation methods-User models
Quantum computing
Solid modeling
Support vector machines
Three-dimensional displays
Virtual reality
Title Quantum Computational Modeling for Affective Assessment in Virtual Reality Systems
URI https://ieeexplore.ieee.org/document/10536489
WOSCitedRecordID wos001239375400048&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV27TgMxELRIREEFiCDeckFr8Pn8LCNERBWFCEK6yI896QouKOT4fmzfESoKOsuFLa1l79jemUHotuTWCKCcGKmBcA-MWOc9icgkeB4C01VnNqGmU71cmllPVs9cGADIxWdwl5r5Lz-sfZueyuIOF6Xk2gzQQCnVkbV6JaGCmvvF_C2i-bKMtz6WNLFp1vj_9UzJKWNy-M_JjtDol3yHZ7u0coz2oDlB8-c2hqB9x50LQ_-Ch5OTWeKT4wg98TiXZsTTC493cpu4bvCi3iSSCJ5Dxty4FykfodfJ48vDE-ntEEjNKN-SwtggbMwuVtEKSicEg0oAGKsk9b40jlsvq4gAAwMWtGNF5ZWjIA1wW9DyFA2bdQNnCHuqvBDOxdEkl9zpuM2FhqLSPF7HLD1HoxSQ1UeneLH6icXFH_2X6CDFPNVmFfIKDbebFq7Rvv_a1p-bm7xO3_Idl24
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8MgGCU6TfSkxhl_y8FrlVKgcFyMy4xzmcucuy1AvyY92Jm6-vcLtG4nD94IB0g-At8DvvceQrcJ04oDYZESEiJmgUbaWBs5ZJJZlmVU5o3ZRDoayflcjVuyeuDCAEAoPoM73wx_-dnS1v6pzO1wnggm1Tba4YzRuKFrtVpCMVH3s8m7w_NJ4u591Ktik6Dyv3FNCUmjf_DP6Q5Rd0O_w-N1YjlCW1Aeo8lr7YJQf-DGh6F9w8Pey8wzyrEDn7gXijPc-YV7a8FNXJR4VlSeJoInEFA3bmXKu-it_zh9GEStIUJUUMJWUax0xrXLLzolOSSGcwo5B1A6FcTaRBmmrcgdBswo0EwaGuc2NQSEAqZjkpygTrks4RRhS1LLuTFuNMEEM9JtdC4hziVzFzJNzlDXB2Tx2WheLH5jcf5H_w3aG0xfhovh0-j5Au37-PtKrVhcos6qquEK7drvVfFVXYc1-wEA8Jq1
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+IEEE+Conference+on+Virtual+Reality+and+3D+User+Interfaces+Abstracts+and+Workshops+%28VRW%29&rft.atitle=Quantum+Computational+Modeling+for+Affective+Assessment+in+Virtual+Reality+Systems&rft.au=Bayro%2C+Allison&rft.au=Jeong%2C+Heejin&rft.date=2024-03-16&rft.pub=IEEE&rft.spage=277&rft.epage=279&rft_id=info:doi/10.1109%2FVRW62533.2024.00054&rft.externalDocID=10536489