Quantum Computational Modeling for Affective Assessment in Virtual Reality Systems
This research explores the use of quantum machine learning-more specifically, the Quantum Support Vector Machine (QSVM)-to predict emotional reactions triggered in virtual reality (VR) settings. The study's experimental setup involved provoking different emotional states via VR gameplay element...
Uloženo v:
| Vydáno v: | 2024 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW) s. 277 - 279 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
16.03.2024
|
| Témata: | |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | This research explores the use of quantum machine learning-more specifically, the Quantum Support Vector Machine (QSVM)-to predict emotional reactions triggered in virtual reality (VR) settings. The study's experimental setup involved provoking different emotional states via VR gameplay elements and capturing the physiological signals of participants. These signals were paired with the subjects' self-reported emotions, measured through the Self-Assessment Manikin. The study then employed both conventional Support Vector Machines (SVM) and QSVM to classify the data. Notably, QSVM surpassed the traditional SVM in accurately predicting the levels of arousal and valence, achieving higher precision with a reduced set of features. This enhanced efficiency is likely due to QSVM's superior handling of the intricate patterns in emotional data and the quantum models' more effective computational resource usage. These results hold considerable potential for the field of affective computing within VR environments, indicating the advantageous prospects of quantum machine learning for the domain. |
|---|---|
| AbstractList | This research explores the use of quantum machine learning-more specifically, the Quantum Support Vector Machine (QSVM)-to predict emotional reactions triggered in virtual reality (VR) settings. The study's experimental setup involved provoking different emotional states via VR gameplay elements and capturing the physiological signals of participants. These signals were paired with the subjects' self-reported emotions, measured through the Self-Assessment Manikin. The study then employed both conventional Support Vector Machines (SVM) and QSVM to classify the data. Notably, QSVM surpassed the traditional SVM in accurately predicting the levels of arousal and valence, achieving higher precision with a reduced set of features. This enhanced efficiency is likely due to QSVM's superior handling of the intricate patterns in emotional data and the quantum models' more effective computational resource usage. These results hold considerable potential for the field of affective computing within VR environments, indicating the advantageous prospects of quantum machine learning for the domain. |
| Author | Jeong, Heejin Bayro, Allison |
| Author_xml | – sequence: 1 givenname: Allison surname: Bayro fullname: Bayro, Allison email: abayro@asu.edu organization: Arizona State University – sequence: 2 givenname: Heejin surname: Jeong fullname: Jeong, Heejin email: heejin.jeong@asu.edu organization: Arizona State University |
| BookMark | eNotzMtKxDAUgOEIutBxnkAXeYHWk2ubZSleBkbEquNySNsTCbTp0KRC315BV__m478i52EKSMgNg5wxMHeH5lNzJUTOgcscAJQ8I1tTmFIoEIWUBi5J87rYkJaR1tN4WpJNfgp2oM9Tj4MPX9RNM62cwy75b6RVjBjjiCFRH-jBz2n5xQ3awaeVvq0x4RivyYWzQ8Ttfzfk4-H-vX7K9i-Pu7raZ56DTBkztlcWdGELcChapTg6hWhsoaHrhGml7bQrAXqOvC9bzlxXtIDaoLQMxIbc_n09Ih5Psx_tvB4ZKKFlacQPWhhPEw |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/VRW62533.2024.00054 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9798350374490 |
| EndPage | 279 |
| ExternalDocumentID | 10536489 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i204t-19ad5a067a70fe3b552ef5ee9a760cc39b4ac6f800d2e2d8b21fc7b0e69e4a103 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001239375400048&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Jun 05 05:40:33 EDT 2024 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i204t-19ad5a067a70fe3b552ef5ee9a760cc39b4ac6f800d2e2d8b21fc7b0e69e4a103 |
| PageCount | 3 |
| ParticipantIDs | ieee_primary_10536489 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-March-16 |
| PublicationDateYYYYMMDD | 2024-03-16 |
| PublicationDate_xml | – month: 03 year: 2024 text: 2024-March-16 day: 16 |
| PublicationDecade | 2020 |
| PublicationTitle | 2024 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW) |
| PublicationTitleAbbrev | VRW |
| PublicationYear | 2024 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.885922 |
| Snippet | This research explores the use of quantum machine learning-more specifically, the Quantum Support Vector Machine (QSVM)-to predict emotional reactions... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 277 |
| SubjectTerms | Affective computing Computational modeling Human-centered computing-Human computer interaction (HCI)-HCI design and evaluation methods-User models Quantum computing Solid modeling Support vector machines Three-dimensional displays Virtual reality |
| Title | Quantum Computational Modeling for Affective Assessment in Virtual Reality Systems |
| URI | https://ieeexplore.ieee.org/document/10536489 |
| WOSCitedRecordID | wos001239375400048&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwFLRoxcAEiCK-5YHV4I_YjscKUTFVpYLSrbLjZykDKSpNfz-2G9qJgUxRligX2e_y8u4OoXuhhPM-FIQFFkjk_0CcE45Yr0CkQ1mXwyb0eFzO52bSidWzFgYA8vAZPKTT_C_fL6s2tcriCpdCFaXpoZ7WeivW6pyEGDWPs-lHZPNCxK8-njyxafb432em5JIxOv7nzU7QYC--w5NdWTlFB9CcoelrGyFoP_E2haHr4OGUZJb05DhSTzzMoxlx98LDnd0mrhs8q1dJJIKnkDk37kzKB-h99Pz29EK6OARSc1qsCTPWSxuri9U0gHBScggSwFitaFUJ4wpbqRAZoOfAfek4C5V2FJSBwjIqzlG_WTZwgbCNtCw-nZOQ3O4lL0tb2RAK5kTprJWXaJAAWXxtHS8Wv1hc_XH9Gh0lzNNsFlM3qL9etXCLDqvNuv5e3eX39AOBgpg0 |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwFLSgIMEEiCK-8cBqiD8TjxWiKqJUpSqlW2Unz1IGUlQafj-2G9qJgUxRligX2e_y8u4OoVuuuC0KJwh11BHP_4FYyy0xhQIeDmVsDJtIB4NsOtXDRqwetTAAEIfP4C6cxn_5xTyvQ6vMr3DJlcj0NtqRQjC6kms1XkI00feT0bvn85z77z4WXLGT6PK_SU2JRaN78M_bHaL2Rn6Hh-vCcoS2oDpGo9fag1B_4FUOQ9PDwyHLLCjKsSefuBOHM_z-hTtrw01cVnhSLoJMBI8gsm7c2JS30Vv3cfzQI00gAilZIpaEalNI4-uLSRMH3ErJwEkAbVKV5DnXVphcOc8BCwasyCyjLk9tAkqDMDThJ6hVzSs4Rdh4YuafzkoIfveSZZnJjXOCWp5ZY-QZagdAZp8rz4vZLxbnf1y_QXu98Ut_1n8aPF-g_YB_mNSi6hK1losartBu_r0svxbX8Z39AJnmm3s |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+IEEE+Conference+on+Virtual+Reality+and+3D+User+Interfaces+Abstracts+and+Workshops+%28VRW%29&rft.atitle=Quantum+Computational+Modeling+for+Affective+Assessment+in+Virtual+Reality+Systems&rft.au=Bayro%2C+Allison&rft.au=Jeong%2C+Heejin&rft.date=2024-03-16&rft.pub=IEEE&rft.spage=277&rft.epage=279&rft_id=info:doi/10.1109%2FVRW62533.2024.00054&rft.externalDocID=10536489 |