Robust GNN-Based Representation Learning for HLS

The efficient and timely optimization of microarchitecture for a target application is hindered by the long evaluation runtime of a design candidate, creating a serious burden. To tackle this problem, researchers have started using learning algorithms such as graph neural networks (GNNs) to accelera...

Full description

Saved in:
Bibliographic Details
Published in:Digest of technical papers - IEEE/ACM International Conference on Computer-Aided Design pp. 1 - 9
Main Authors: Sohrabizadeh, Atefeh, Bai, Yunsheng, Sun, Yizhou, Cong, Jason
Format: Conference Proceeding
Language:English
Published: IEEE 28.10.2023
Subjects:
ISSN:1558-2434
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The efficient and timely optimization of microarchitecture for a target application is hindered by the long evaluation runtime of a design candidate, creating a serious burden. To tackle this problem, researchers have started using learning algorithms such as graph neural networks (GNNs) to accelerate the process by developing a surrogate of the target tool. However, challenges arise when developing such models for HLS tools due to the program's long dependency range and deeply coupled input program and transformations (i.e., pragmas). To address them, in this paper, we present HARP ( H ierarchical A ugmentation for R epresentation with P ragma optimization) with a novel hierarchical graph representation of the HLS design by introducing auxiliary nodes to include high-level hierarchical information about the design. Additionally, HARP decouples the representation of the program and its transformations and includes a neural pragma transformer (NPT) approach to facilitate a more systematic treatment of this process. Our proposed graph representation and model architecture of HARP not only enhance the performance of the model and design space exploration based on it but also improve the model's transfer learning capability, enabling easier adaptation to new environments 1 1 All materials available at https://github.com/UCLA-VAST/HARP.
AbstractList The efficient and timely optimization of microarchitecture for a target application is hindered by the long evaluation runtime of a design candidate, creating a serious burden. To tackle this problem, researchers have started using learning algorithms such as graph neural networks (GNNs) to accelerate the process by developing a surrogate of the target tool. However, challenges arise when developing such models for HLS tools due to the program's long dependency range and deeply coupled input program and transformations (i.e., pragmas). To address them, in this paper, we present HARP ( H ierarchical A ugmentation for R epresentation with P ragma optimization) with a novel hierarchical graph representation of the HLS design by introducing auxiliary nodes to include high-level hierarchical information about the design. Additionally, HARP decouples the representation of the program and its transformations and includes a neural pragma transformer (NPT) approach to facilitate a more systematic treatment of this process. Our proposed graph representation and model architecture of HARP not only enhance the performance of the model and design space exploration based on it but also improve the model's transfer learning capability, enabling easier adaptation to new environments 1 1 All materials available at https://github.com/UCLA-VAST/HARP.
Author Cong, Jason
Sohrabizadeh, Atefeh
Bai, Yunsheng
Sun, Yizhou
Author_xml – sequence: 1
  givenname: Atefeh
  surname: Sohrabizadeh
  fullname: Sohrabizadeh, Atefeh
  email: atefehsz@cs.ucla.edu
  organization: University of California - Los Angeles,Computer Science Department,USA
– sequence: 2
  givenname: Yunsheng
  surname: Bai
  fullname: Bai, Yunsheng
  email: yba@cs.ucla.edu
  organization: University of California - Los Angeles,Computer Science Department,USA
– sequence: 3
  givenname: Yizhou
  surname: Sun
  fullname: Sun, Yizhou
  email: yzsun@cs.ucla.edu
  organization: University of California - Los Angeles,Computer Science Department,USA
– sequence: 4
  givenname: Jason
  surname: Cong
  fullname: Cong, Jason
  email: cong@cs.ucla.edu
  organization: University of California - Los Angeles,Computer Science Department,USA
BookMark eNo1j8FKAzEURaMo2Nb-gYv8wIwveckkWdZR28JQoa3rkkxfZEQzZTIu_HsL6upyFufAnbKr1CdijAsohQB3v67rxaM26KCUILEUgBKtxgs2d8ZZ1GeWUutLNhFa20IqVDdsmvM7wFmw1YTBtg9feeTLzaZ48JmOfEungTKl0Y9dn3hDfkhdeuOxH_iq2d2y6-g_Ms3_dsZen5_29apoXpbretEUnQQ1FgKCB2UVKOdVkMIGipVGgzG04FtoHQCZNgY0loyIAZwmW0VSUh_JCpyxu99uR0SH09B9-uH78P8QfwCAx0YH
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICCAD57390.2023.10323853
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9798350322255
EISSN 1558-2434
EndPage 9
ExternalDocumentID 10323853
Genre orig-research
GrantInformation_xml – fundername: NSF
  grantid: 2211557,1937599,2119643,2303037
  funderid: 10.13039/100000001
– fundername: Cisco
  funderid: 10.13039/100004351
– fundername: NASA
  funderid: 10.13039/100000104
– fundername: Okawa Foundation
  funderid: 10.13039/501100004399
– fundername: Amazon Research
  funderid: 10.13039/501100005288
– fundername: SRC JUMP 2.0 Center
  funderid: 10.13039/100000028
GroupedDBID 6IE
6IF
6IH
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
FEDTE
IEGSK
IJVOP
M43
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i204t-10ba0484049a4b218bef65373fbc0ac0c900e7cfb378e71fb095e86fe425de813
IEDL.DBID RIE
ISICitedReferencesCount 23
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001116715100141&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:22:16 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i204t-10ba0484049a4b218bef65373fbc0ac0c900e7cfb378e71fb095e86fe425de813
PageCount 9
ParticipantIDs ieee_primary_10323853
PublicationCentury 2000
PublicationDate 2023-Oct.-28
PublicationDateYYYYMMDD 2023-10-28
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-Oct.-28
  day: 28
PublicationDecade 2020
PublicationTitle Digest of technical papers - IEEE/ACM International Conference on Computer-Aided Design
PublicationTitleAbbrev ICCAD
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0020286
Score 2.4344213
Snippet The efficient and timely optimization of microarchitecture for a target application is hindered by the long evaluation runtime of a design candidate, creating...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Adaptation models
Computational modeling
Microarchitecture
Representation learning
Runtime
Systematics
Transfer learning
Title Robust GNN-Based Representation Learning for HLS
URI https://ieeexplore.ieee.org/document/10323853
WOSCitedRecordID wos001116715100141&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwMhECa28aAXXzW-w8ErLVvYhb3aWGtiNk3VpLcG2MH0sjXt1t_vQLc-Dh68ERIgAxm-GZhvhpDbhOvSZZCyxIBnMk1KpnPuWepTEE7kwisfi02ootDTaT5uyOqRCwMAMfgMuqEZ__LLhVuHp7JeSP4mEF9apKVUtiFrfXlXCJTZNlSH573HAYqSKnTpu6FCeHc79lcVlQgiw4N_Ln9IOt90PDr-ApojsgPVMdn_kUnwhPDJwq5XNX0oCnaHwFTSSQxxbZhFFW3yqL5RNFLp6Om5Q16H9y-DEWuKIbB5n8sar0trUNskWvRGWgRmCz5LhRLeOm4cdznnoJy3QmlQibdoO4HOPKBSlqATcUra1aKCM0KlyawUBqyEUioAY3CaEh0b7bzQPD8nnSD87H2T72K2lfvij_5Lshe2ONzofX1F2vVyDddk133U89XyJp7SJ3WvkdI
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1BQQIWvor4JgNrWqd2YmelorSiRFUpUrfKds5VlxS1Kb8f26QFBga2yFKinK3zu7Pv3QO4j4jIdYJxGEk0IYujPBQpMWFsYqSaptRw48UmeJaJ8TgdVGR1z4VBRF98hg336O_y87leuaOypmv-Ri2-bMOOk86q6Fqb_MpCZbIu1iFps9e2xsTcJvUNpxHeWL_9S0fFw0jn8J8_cAT1b0JeMNhAzTFsYXECBz96CZ4CGc7ValkGT1kWPlhoyoOhL3KtuEVFUHVSnQY2TA26_dc6vHUeR-1uWMkhhLMWYaXdMJW0_sZsTC-ZstCs0CQx5dQoTaQmOiUEuTaKcoE8MspGTygSg9YtcxQRPYNaMS_wHAImE8WoRMUwZxxRSvuZ3KY2QhsqSHoBdWf85P2r48VkbfflH-N3sNcdvfQn_V72fAX7brrd_t4S11ArFyu8gV39Uc6Wi1u_Yp9DkpUb
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Digest+of+technical+papers+-+IEEE%2FACM+International+Conference+on+Computer-Aided+Design&rft.atitle=Robust+GNN-Based+Representation+Learning+for+HLS&rft.au=Sohrabizadeh%2C+Atefeh&rft.au=Bai%2C+Yunsheng&rft.au=Sun%2C+Yizhou&rft.au=Cong%2C+Jason&rft.date=2023-10-28&rft.pub=IEEE&rft.eissn=1558-2434&rft.spage=1&rft.epage=9&rft_id=info:doi/10.1109%2FICCAD57390.2023.10323853&rft.externalDocID=10323853