Deep Stereo Using Adaptive Thin Volume Representation With Uncertainty Awareness

We present Uncertainty-aware Cascaded Stereo Network (UCS-Net) for 3D reconstruction from multiple RGB images. Multi-view stereo (MVS) aims to reconstruct fine-grained scene geometry from multi-view images. Previous learning-based MVS methods estimate per-view depth using plane sweep volumes (PSVs)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) S. 2521 - 2531
Hauptverfasser: Cheng, Shuo, Xu, Zexiang, Zhu, Shilin, Li, Zhuwen, Li, Li Erran, Ramamoorthi, Ravi, Su, Hao
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 01.06.2020
Schlagworte:
ISSN:1063-6919
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract We present Uncertainty-aware Cascaded Stereo Network (UCS-Net) for 3D reconstruction from multiple RGB images. Multi-view stereo (MVS) aims to reconstruct fine-grained scene geometry from multi-view images. Previous learning-based MVS methods estimate per-view depth using plane sweep volumes (PSVs) with a fixed depth hypothesis at each plane; this requires densely sampled planes for high accuracy, which is impractical for high-resolution depth because of limited memory. In contrast, we propose adaptive thin volumes (ATVs); in an ATV, the depth hypothesis of each plane is spatially varying, which adapts to the uncertainties of previous per-pixel depth predictions. Our UCS-Net has three stages: the first stage processes a small PSV to predict low-resolution depth; two ATVs are then used in the following stages to refine the depth with higher resolution and higher accuracy. Our ATV consists of only a small number of planes with low memory and computation costs; yet, it efficiently partitions local depth ranges within learned small uncertainty intervals. We propose to use variance-based uncertainty estimates to adaptively construct ATVs; this differentiable process leads to reasonable and fine-grained spatial partitioning. Our multi-stage framework progressively sub-divides the vast scene space with increasing depth resolution and precision, which enables reconstruction with high completeness and accuracy in a coarse-to-fine fashion. We demonstrate that our method achieves superior performance compared with other learning-based MVS methods on various challenging datasets.
AbstractList We present Uncertainty-aware Cascaded Stereo Network (UCS-Net) for 3D reconstruction from multiple RGB images. Multi-view stereo (MVS) aims to reconstruct fine-grained scene geometry from multi-view images. Previous learning-based MVS methods estimate per-view depth using plane sweep volumes (PSVs) with a fixed depth hypothesis at each plane; this requires densely sampled planes for high accuracy, which is impractical for high-resolution depth because of limited memory. In contrast, we propose adaptive thin volumes (ATVs); in an ATV, the depth hypothesis of each plane is spatially varying, which adapts to the uncertainties of previous per-pixel depth predictions. Our UCS-Net has three stages: the first stage processes a small PSV to predict low-resolution depth; two ATVs are then used in the following stages to refine the depth with higher resolution and higher accuracy. Our ATV consists of only a small number of planes with low memory and computation costs; yet, it efficiently partitions local depth ranges within learned small uncertainty intervals. We propose to use variance-based uncertainty estimates to adaptively construct ATVs; this differentiable process leads to reasonable and fine-grained spatial partitioning. Our multi-stage framework progressively sub-divides the vast scene space with increasing depth resolution and precision, which enables reconstruction with high completeness and accuracy in a coarse-to-fine fashion. We demonstrate that our method achieves superior performance compared with other learning-based MVS methods on various challenging datasets.
Author Xu, Zexiang
Zhu, Shilin
Li, Zhuwen
Su, Hao
Ramamoorthi, Ravi
Li, Li Erran
Cheng, Shuo
Author_xml – sequence: 1
  givenname: Shuo
  surname: Cheng
  fullname: Cheng, Shuo
  organization: University of California, San Diego
– sequence: 2
  givenname: Zexiang
  surname: Xu
  fullname: Xu, Zexiang
  organization: University of California, San Diego
– sequence: 3
  givenname: Shilin
  surname: Zhu
  fullname: Zhu, Shilin
  organization: University of California, San Diego
– sequence: 4
  givenname: Zhuwen
  surname: Li
  fullname: Li, Zhuwen
  organization: Nuro Inc
– sequence: 5
  givenname: Li Erran
  surname: Li
  fullname: Li, Li Erran
  organization: Scale AI; Columbia University
– sequence: 6
  givenname: Ravi
  surname: Ramamoorthi
  fullname: Ramamoorthi, Ravi
  organization: University of California, San Diego
– sequence: 7
  givenname: Hao
  surname: Su
  fullname: Su, Hao
  organization: University of California, San Diego
BookMark eNotjNFOwjAUQKvRRES-QB_6A8Pb3rVrHwmKmpBIcOAjGdut1EC3rFXD30uiDyfnPJ1rdhHaQIzdCRgLAfZ-ul4sc6kBxhIkjAFOfcZGtjCikCeENuqcDQRozLQV9oqNYvwEAJRCaGsGbPFA1PG3RD21fBV9-OCTpuqS_yZe7nzg63b_dSC-pK6nSCFVybeBv_u046tQU58qH9KRT36qngLFeMMuXbWPNPr3kJWzx3L6nM1fn16mk3nmJWDKnFOFgcblEpotOcqN0Y2pkQgBwRpqsMa6diC22jpUW4UFKiCjcmWcxSG7_dt6Itp0vT9U_XFjhdKYS_wFnwdSWA
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR42600.2020.00260
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 9781728171685
1728171687
EISSN 1063-6919
EndPage 2531
ExternalDocumentID 9156342
Genre orig-research
GroupedDBID 6IE
6IH
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i203t-ff5780df420dbefe4886d8c3ee303098ed3c3ccf01b69f35b537350e85458f93
IEDL.DBID RIE
ISICitedReferencesCount 290
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000620679502079&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:30:35 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-ff5780df420dbefe4886d8c3ee303098ed3c3ccf01b69f35b537350e85458f93
PageCount 11
ParticipantIDs ieee_primary_9156342
PublicationCentury 2000
PublicationDate 2020-Jun
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-Jun
PublicationDecade 2020
PublicationTitle Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online)
PublicationTitleAbbrev CVPR
PublicationYear 2020
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003211698
Score 2.6122873
Snippet We present Uncertainty-aware Cascaded Stereo Network (UCS-Net) for 3D reconstruction from multiple RGB images. Multi-view stereo (MVS) aims to reconstruct...
SourceID ieee
SourceType Publisher
StartPage 2521
SubjectTerms Feature extraction
Geometry
Image reconstruction
Image resolution
Memory management
Three-dimensional displays
Uncertainty
Title Deep Stereo Using Adaptive Thin Volume Representation With Uncertainty Awareness
URI https://ieeexplore.ieee.org/document/9156342
WOSCitedRecordID wos000620679502079&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG6QePDkA4zv9ODRldIpbfdIUOLBkA0iciO77TRyAQKLxn9vWzbowYu3poc2mclMOzPfN0PILRdOc5VjAlJiIkC6pFBgE3RC-d-zLfJYPR8_q8FATyZpViN3Oy4MIkbwGd6HZazl24XZhFRZK_XBBgjvcPeUkluu1i6fAj6Skamu2HFtlrZ642wY-6_7KJAHABcPfSh_zVCJT0j_8H-XH5HmDxePZrtX5pjUcH5CDqvPI61Mc90g2QPikr54MeGCRiAA7dp8GbwZDcM56Tj6ITqM0NeKcTSnb7Pynb76IyIyoPyi3c9AD_P-r0lG_cdR7ympxiUkM86gTJzz1sesE5zZAh1605RWG0CEUEfRaMGAMY61C5k66BQdUNBhqEPtzKVwSurzxRzPCAXtjCwKLbhhAoVJmfNmLHLjwDFU_Jw0gnymy21DjGklmou_ty_JQVDAFl91RerlaoPXZN98lLP16iZq8Rv_ip7d
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTwIxEG0ImugJFYzf9uDRlbLT3e0eCUowItkgIjey204jl4XAovHf25YNevDiremhTWYy087MezOE3PhcCz9K0YMwRI9DqL0sAuWh5pH5PassddXzcT8aDMRkEicVcrvlwiCiA5_hnV26Wr6ay7VNlTVjE2wANw53J-DcZxu21jajAiaWCWNR8uNaLG52xsnQdWA3caBvIVy-7UT5a4qKe0S6tf9df0AaP2w8mmzfmUNSwfyI1MrvIy2Nc1UnyT3igr4YQeGcOigAbat0Yf0ZteM56dh5Ijp04NeSc5TTt1nxTl_NEQ4bUHzR9qcliBkP2CCj7sOo0_PKgQnezGdQeFob-2NKG9moDDUa4wyVkIAItpIiUIEEKTVrZWGsIcgCiCBgKGz1TMdwTKr5PMcTQkFoGWaZ4L5kHLmMmTaGzFOpQTOM_FNSt_KZLjYtMaalaM7-3r4me73Rc3_afxw8nZN9q4wN2uqCVIvlGi_JrvwoZqvlldPoN3HToiQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%28IEEE+Computer+Society+Conference+on+Computer+Vision+and+Pattern+Recognition.+Online%29&rft.atitle=Deep+Stereo+Using+Adaptive+Thin+Volume+Representation+With+Uncertainty+Awareness&rft.au=Cheng%2C+Shuo&rft.au=Xu%2C+Zexiang&rft.au=Zhu%2C+Shilin&rft.au=Li%2C+Zhuwen&rft.date=2020-06-01&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=2521&rft.epage=2531&rft_id=info:doi/10.1109%2FCVPR42600.2020.00260&rft.externalDocID=9156342