Chaotic Evolution Algorithm with Elite Strategy in Single-objective and Multi-objective Optimization

We propose a chaotic evolution algorithm with elite strategy. The conventional chaotic evolution algorithm uses each individual to search in its local area. The proposed algorithm searches the parameter space always around the elite individual from the last generation. We evaluate the proposed algor...

Full description

Saved in:
Bibliographic Details
Published in:Conference proceedings - IEEE International Conference on Systems, Man, and Cybernetics pp. 579 - 584
Main Author: Pei, Yan
Format: Conference Proceeding
Language:English
Published: IEEE 11.10.2020
Subjects:
ISSN:2577-1655
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We propose a chaotic evolution algorithm with elite strategy. The conventional chaotic evolution algorithm uses each individual to search in its local area. The proposed algorithm searches the parameter space always around the elite individual from the last generation. We evaluate the proposed algorithm in both single-objective and multi-objective optimization problems. In the single objective optimization problem, the elite is the individual has the best fitness value, and in the multi-objective optimization problem, the elites are the individuals in the first Pareto front. We design and evaluate these two algorithms with elite strategy using single- and multi-objective benchmark functions. We design a jump strategy to avoid searching within a local optima areas by applying elite strategy several generations one time. The numerical evaluation results demonstrate the proposed algorithm has strong local exploitation capability in the early generations. The optimization performance of chaotic evolution algorithm has a potential possibility to apply in high dimensional and more complex optimization problems.
AbstractList We propose a chaotic evolution algorithm with elite strategy. The conventional chaotic evolution algorithm uses each individual to search in its local area. The proposed algorithm searches the parameter space always around the elite individual from the last generation. We evaluate the proposed algorithm in both single-objective and multi-objective optimization problems. In the single objective optimization problem, the elite is the individual has the best fitness value, and in the multi-objective optimization problem, the elites are the individuals in the first Pareto front. We design and evaluate these two algorithms with elite strategy using single- and multi-objective benchmark functions. We design a jump strategy to avoid searching within a local optima areas by applying elite strategy several generations one time. The numerical evaluation results demonstrate the proposed algorithm has strong local exploitation capability in the early generations. The optimization performance of chaotic evolution algorithm has a potential possibility to apply in high dimensional and more complex optimization problems.
Author Pei, Yan
Author_xml – sequence: 1
  givenname: Yan
  surname: Pei
  fullname: Pei, Yan
  organization: University of Aizu,Computer Science Division,Aizu-Wakamatsu,Fukushima,Japan,965-8580
BookMark eNpNkM1OwkAUhUejiYA8gTGZF2idufPTmSVpEE0gLNA1mXZuy5DSkjJg8OnFyMLNOcnJl29xhuSu7Vok5JmzlHNmX1aLXILNVAoMWGrBCC7lDRnbzPAMDDcKNNySAagsS7hW6oEMD4ctu9CSmwHx-cZ1MZR0euqaYwxdSydN3fUhbnb065J02oSIdBV7F7E-09DSVWjrBpOu2GIZwwmpaz1dHJsY_m3LfQy78O1-lY_kvnLNAcfXHpHP1-lH_pbMl7P3fDJPAjARk6r0FqDQEpkpUDotKiu8lsJ6DVCCV9Z47XSpNRhUziuoiqKsjGQe0XgxIk9_3oCI630fdq4_r6-niB-I4Vqi
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/SMC42975.2020.9283144
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISBN 9781728185262
1728185262
EISSN 2577-1655
EndPage 584
ExternalDocumentID 9283144
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i203t-fcd922b64e08be4a63f93d6439d622c2d598d6a6c6628e5ad52fbbcf840dee8d3
IEDL.DBID RIE
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000687430600090&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:33:58 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-fcd922b64e08be4a63f93d6439d622c2d598d6a6c6628e5ad52fbbcf840dee8d3
PageCount 6
ParticipantIDs ieee_primary_9283144
PublicationCentury 2000
PublicationDate 2020-Oct.-11
PublicationDateYYYYMMDD 2020-10-11
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-Oct.-11
  day: 11
PublicationDecade 2020
PublicationTitle Conference proceedings - IEEE International Conference on Systems, Man, and Cybernetics
PublicationTitleAbbrev SMC
PublicationYear 2020
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0020418
Score 2.171025
Snippet We propose a chaotic evolution algorithm with elite strategy. The conventional chaotic evolution algorithm uses each individual to search in its local area....
SourceID ieee
SourceType Publisher
StartPage 579
SubjectTerms Benchmark testing
chaotic evolution
Conferences
Cybernetics
elite strategy
multi-objective optimization
Optimization
single-objective optimization
Title Chaotic Evolution Algorithm with Elite Strategy in Single-objective and Multi-objective Optimization
URI https://ieeexplore.ieee.org/document/9283144
WOSCitedRecordID wos000687430600090&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH9sw4NedB_iNzl4ULBbm7Zpe5Sx4UHnYCq7jXy6ytbK1g387026MCd48RYCSSDvJS-_JL_fA7j2Ik6potzxgpA5AY6Ew0ggnYT6oSKUU1XmT3l7jAaDeDxOhhW423JhpJTl5zPZNsXyLV_kfGWuyjqJjoUaAFShGkVkw9Xagis38GLL0PHcpDN66gaGNKoRIHbbtuGvDCplAOkf_m_oI2j9MPHQcBtj6lCRWQMOdkQEG1C3y3OJbqyG9G0TRHdKc-0TqLe2voXuZ-_5Ii2mc2TuXlHPkI-RFaf9QmmGRrq7mXRy9rHZBBHNBCoJujt1z3qLmVvuZgte-72X7oNjEyo4KXb9wlFcJBgbW7gxkwElvkp8Yc4kgmDMsQiTWBBKOCE4liEVIVaMcaVBoJAyFv4x1LI8kyeAhG90cYySi9IIhtFSR40I3YKJ0GPqFJpmEiefG82MiZ2_s7-rz2Hf2MnEBM-7gFqxWMlL2OPrIl0urkpDfwOS8awU
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFH5BNFEvCmL8bQ8eNHGwdVvZjoZgMAKSoIYb6U_BwGZgkPjf244GNfHirWnSNul77evX9vsewJVX55Qqyh0vCJkT4LpwGAmkE1M_VIRyqvL8Ka_tercbDQZxrwC3ay6MlDL_fCarppi_5YuUL8xVWS3WsVADgA3YDIMAuyu21hpeuYEXWY6O58a1fqcRGNqoxoDYrdqmv3Ko5CHkfu9_g-9D5ZuLh3rrKFOCgkzKsPtDRrAMJbtA5-jaqkjfHIBojGiqvQI1l9a70N3kLZ2Ns9EUmdtX1DT0Y2TlaT_ROEF93d1EOil7X22DiCYC5RTdH3VPepOZWvZmBV7um8-NlmNTKjhj7PqZo7iIMTbWcCMmA0p8FfvCnEoEwZhjEcaRIJRwQnAkQypCrBjjSsNAIWUk_EMoJmkijwAJ3yjjGC0XpTEMo7mSGhG6BROhx9QxHJhJHH6sVDOGdv5O_q6-hO3Wc6c9bD90H09hx9jMRAjPO4NiNlvIc9jiy2w8n13kRv8CsgOvWw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Conference+proceedings+-+IEEE+International+Conference+on+Systems%2C+Man%2C+and+Cybernetics&rft.atitle=Chaotic+Evolution+Algorithm+with+Elite+Strategy+in+Single-objective+and+Multi-objective+Optimization&rft.au=Pei%2C+Yan&rft.date=2020-10-11&rft.pub=IEEE&rft.eissn=2577-1655&rft.spage=579&rft.epage=584&rft_id=info:doi/10.1109%2FSMC42975.2020.9283144&rft.externalDocID=9283144