Chaotic Evolution Algorithm with Elite Strategy in Single-objective and Multi-objective Optimization
We propose a chaotic evolution algorithm with elite strategy. The conventional chaotic evolution algorithm uses each individual to search in its local area. The proposed algorithm searches the parameter space always around the elite individual from the last generation. We evaluate the proposed algor...
Uloženo v:
| Vydáno v: | Conference proceedings - IEEE International Conference on Systems, Man, and Cybernetics s. 579 - 584 |
|---|---|
| Hlavní autor: | |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
11.10.2020
|
| Témata: | |
| ISSN: | 2577-1655 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | We propose a chaotic evolution algorithm with elite strategy. The conventional chaotic evolution algorithm uses each individual to search in its local area. The proposed algorithm searches the parameter space always around the elite individual from the last generation. We evaluate the proposed algorithm in both single-objective and multi-objective optimization problems. In the single objective optimization problem, the elite is the individual has the best fitness value, and in the multi-objective optimization problem, the elites are the individuals in the first Pareto front. We design and evaluate these two algorithms with elite strategy using single- and multi-objective benchmark functions. We design a jump strategy to avoid searching within a local optima areas by applying elite strategy several generations one time. The numerical evaluation results demonstrate the proposed algorithm has strong local exploitation capability in the early generations. The optimization performance of chaotic evolution algorithm has a potential possibility to apply in high dimensional and more complex optimization problems. |
|---|---|
| AbstractList | We propose a chaotic evolution algorithm with elite strategy. The conventional chaotic evolution algorithm uses each individual to search in its local area. The proposed algorithm searches the parameter space always around the elite individual from the last generation. We evaluate the proposed algorithm in both single-objective and multi-objective optimization problems. In the single objective optimization problem, the elite is the individual has the best fitness value, and in the multi-objective optimization problem, the elites are the individuals in the first Pareto front. We design and evaluate these two algorithms with elite strategy using single- and multi-objective benchmark functions. We design a jump strategy to avoid searching within a local optima areas by applying elite strategy several generations one time. The numerical evaluation results demonstrate the proposed algorithm has strong local exploitation capability in the early generations. The optimization performance of chaotic evolution algorithm has a potential possibility to apply in high dimensional and more complex optimization problems. |
| Author | Pei, Yan |
| Author_xml | – sequence: 1 givenname: Yan surname: Pei fullname: Pei, Yan organization: University of Aizu,Computer Science Division,Aizu-Wakamatsu,Fukushima,Japan,965-8580 |
| BookMark | eNpNkM1OwkAUhUejiYA8gTGZF2idufPTmSVpEE0gLNA1mXZuy5DSkjJg8OnFyMLNOcnJl29xhuSu7Vok5JmzlHNmX1aLXILNVAoMWGrBCC7lDRnbzPAMDDcKNNySAagsS7hW6oEMD4ctu9CSmwHx-cZ1MZR0euqaYwxdSydN3fUhbnb065J02oSIdBV7F7E-09DSVWjrBpOu2GIZwwmpaz1dHJsY_m3LfQy78O1-lY_kvnLNAcfXHpHP1-lH_pbMl7P3fDJPAjARk6r0FqDQEpkpUDotKiu8lsJ6DVCCV9Z47XSpNRhUziuoiqKsjGQe0XgxIk9_3oCI630fdq4_r6-niB-I4Vqi |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/SMC42975.2020.9283144 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Sciences (General) |
| EISBN | 9781728185262 1728185262 |
| EISSN | 2577-1655 |
| EndPage | 584 |
| ExternalDocumentID | 9283144 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP IPLJI M43 OCL RIE RIL RIO RNS |
| ID | FETCH-LOGICAL-i203t-fcd922b64e08be4a63f93d6439d622c2d598d6a6c6628e5ad52fbbcf840dee8d3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 7 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000687430600090&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:33:58 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i203t-fcd922b64e08be4a63f93d6439d622c2d598d6a6c6628e5ad52fbbcf840dee8d3 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_9283144 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-Oct.-11 |
| PublicationDateYYYYMMDD | 2020-10-11 |
| PublicationDate_xml | – month: 10 year: 2020 text: 2020-Oct.-11 day: 11 |
| PublicationDecade | 2020 |
| PublicationTitle | Conference proceedings - IEEE International Conference on Systems, Man, and Cybernetics |
| PublicationTitleAbbrev | SMC |
| PublicationYear | 2020 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0020418 |
| Score | 2.171129 |
| Snippet | We propose a chaotic evolution algorithm with elite strategy. The conventional chaotic evolution algorithm uses each individual to search in its local area.... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 579 |
| SubjectTerms | Benchmark testing chaotic evolution Conferences Cybernetics elite strategy multi-objective optimization Optimization single-objective optimization |
| Title | Chaotic Evolution Algorithm with Elite Strategy in Single-objective and Multi-objective Optimization |
| URI | https://ieeexplore.ieee.org/document/9283144 |
| WOSCitedRecordID | wos000687430600090&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFH4B4kEvyg_j7_TgQRMHW7uV9mgIxItIgibcSNd2MgObgUHif287GsTEi7el2dqkr-t732u_7wHcKiIiTKVNujN7zCgTTxBhAjlR6oVFSklZFpvoDodsMuGjCjzsuDBa6_LymW7bx_IsX-VybVNlHW58oQEAVah2u3TL1dqBKz8MmGPoBD7vjJ97oSWNGgSI_bb78FcFldKBDI7_N_QJtH6YeGi08zF1qOisAUd7IoINqLvfc4XunIb0fRNUbyZysyZQf-PWFnqcv-fLtJgtkM29or4lHyMnTvuF0gyNTXdz7eXxx3YTRCJTqCTo7rW9mC1m4bibLXgb9F97T54rqOCl2CeFl0jFMY5pqH0W61BQknCibEyiKMYSq4gzRQWVlGKmI6EinMSxTAwIVFozRU6hluWZPgMksQhExHTMTQSDYykIDwWxeMS8rmlwDk07idPPrWbG1M3fxd_Nl3Bo7WR9QhBcQa1YrvU1HMhNka6WN6WhvwEIUKuv |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFH5BNFEvyg_jb3vwoImDrdtqdzQEghGQBEy4ka7tZAY2A4PE_952NIiJF29Ls7VJX9f3vtd-3wO4FS7zMeE66U71MSOPLOYyFcixXC_MF4LzvNjEY69HR6OgX4CHDRdGSplfPpM1_Zif5YuUL3WqrB4oX6gAwA7s-p6H7TVbawOvbM-hhqPj2EF90G14mjaqMCC2a-bTXzVUchfSOvrf4MdQ_eHiof7Gy5SgIJMyHG7JCJahZH7QBbozKtL3FRCNCUvVqkDNlVld6Gn6ns7jbDJDOvuKmpp-jIw87ReKEzRQ3U2llYYf620QsUSgnKK71faqNpmZYW9W4a3VHDbalimpYMXYdjMr4iLAOCSetGkoPUbcKHCFjkoEwZhj4QdUEEY4IZhKnwkfR2HIIwUDhZRUuCdQTNJEngLimDnMpzIMVAyDQ87cwGOuRiTqdUmcM6joSRx_rlUzxmb-zv9uvoH99rDbGXeeey8XcKBtpj2E41xCMZsv5RXs8VUWL-bXudG_ASEmrvY |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Conference+proceedings+-+IEEE+International+Conference+on+Systems%2C+Man%2C+and+Cybernetics&rft.atitle=Chaotic+Evolution+Algorithm+with+Elite+Strategy+in+Single-objective+and+Multi-objective+Optimization&rft.au=Pei%2C+Yan&rft.date=2020-10-11&rft.pub=IEEE&rft.eissn=2577-1655&rft.spage=579&rft.epage=584&rft_id=info:doi/10.1109%2FSMC42975.2020.9283144&rft.externalDocID=9283144 |