DÏoT: A Federated Self-learning Anomaly Detection System for IoT

IoT devices are increasingly deployed in daily life. Many of these devices are, however, vulnerable due to insecure design, implementation, and configuration. As a result, many networks already have vulnerable IoT devices that are easy to compromise. This has led to a new category of malware specifi...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Proceedings of the International Conference on Distributed Computing Systems s. 756 - 767
Hlavní autori: Nguyen, Thien Duc, Marchal, Samuel, Miettinen, Markus, Fereidooni, Hossein, Asokan, N., Sadeghi, Ahmad-Reza
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 01.07.2019
Predmet:
ISSN:2575-8411
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract IoT devices are increasingly deployed in daily life. Many of these devices are, however, vulnerable due to insecure design, implementation, and configuration. As a result, many networks already have vulnerable IoT devices that are easy to compromise. This has led to a new category of malware specifically targeting IoT devices. However, existing intrusion detection techniques are not effective in detecting compromised IoT devices given the massive scale of the problem in terms of the number of different types of devices and manufacturers involved. In this paper, we present DÏoT, an autonomous self-learning distributed system for detecting compromised IoT devices. DÏoT builds effectively on device-type-specific communication profiles without human intervention nor labeled data that are subsequently used to detect anomalous deviations in devices' communication behavior, potentially caused by malicious adversaries. DÏoT utilizes a federated learning approach for aggregating behavior profiles efficiently. To the best of our knowledge, it is the first system to employ a federated learning approach to anomaly-detection-based intrusion detection. Consequently, DÏoT can cope with emerging new and unknown attacks. We systematically and extensively evaluated more than 30 off-the-shelf IoT devices over a long term and show that DÏoT is highly effective (95.6% detection rate) and fast (257 ms) at detecting devices compromised by, for instance, the infamous Mirai malware. DÏoT reported no false alarms when evaluated in a real-world smart home deployment setting.
AbstractList IoT devices are increasingly deployed in daily life. Many of these devices are, however, vulnerable due to insecure design, implementation, and configuration. As a result, many networks already have vulnerable IoT devices that are easy to compromise. This has led to a new category of malware specifically targeting IoT devices. However, existing intrusion detection techniques are not effective in detecting compromised IoT devices given the massive scale of the problem in terms of the number of different types of devices and manufacturers involved. In this paper, we present DÏoT, an autonomous self-learning distributed system for detecting compromised IoT devices. DÏoT builds effectively on device-type-specific communication profiles without human intervention nor labeled data that are subsequently used to detect anomalous deviations in devices' communication behavior, potentially caused by malicious adversaries. DÏoT utilizes a federated learning approach for aggregating behavior profiles efficiently. To the best of our knowledge, it is the first system to employ a federated learning approach to anomaly-detection-based intrusion detection. Consequently, DÏoT can cope with emerging new and unknown attacks. We systematically and extensively evaluated more than 30 off-the-shelf IoT devices over a long term and show that DÏoT is highly effective (95.6% detection rate) and fast (257 ms) at detecting devices compromised by, for instance, the infamous Mirai malware. DÏoT reported no false alarms when evaluated in a real-world smart home deployment setting.
Author Marchal, Samuel
Nguyen, Thien Duc
Miettinen, Markus
Sadeghi, Ahmad-Reza
Asokan, N.
Fereidooni, Hossein
Author_xml – sequence: 1
  givenname: Thien Duc
  surname: Nguyen
  fullname: Nguyen, Thien Duc
  organization: Technische Universität Darmstadt, Germany
– sequence: 2
  givenname: Samuel
  surname: Marchal
  fullname: Marchal, Samuel
  organization: Aalto University, Finland
– sequence: 3
  givenname: Markus
  surname: Miettinen
  fullname: Miettinen, Markus
  organization: Technische Universität Darmstadt, Germany
– sequence: 4
  givenname: Hossein
  surname: Fereidooni
  fullname: Fereidooni, Hossein
  organization: Technische Universität Darmstadt, Germany
– sequence: 5
  givenname: N.
  surname: Asokan
  fullname: Asokan, N.
  organization: Aalto University, Finland
– sequence: 6
  givenname: Ahmad-Reza
  surname: Sadeghi
  fullname: Sadeghi, Ahmad-Reza
  organization: Technische Universität Darmstadt, Germany
BookMark eNotzE1OhEAQQOHWaOLMOHsTN30BsKqh6Wp3BGaUZBIX4HrSQrXB8GOADafwUF5ME129zZe3FVfDOLAQdwghItiHIsuzMlSANgQAgguxt4bQKEKl0cKl2ChtdEAx4o3YzvPHL9OURBuR5t9fY_UoU3nkhie3cCNL7nzQsZuGdniX6TD2rltlzgvXSzsOslznhXvpx0kWY3Urrr3rZt7_dydej4cqew5OL09Flp6CVkG0BL4Gazk2dWTZJhpdgtZrUkC1ewN01CQeSSvVWDaNJ9LMCFhjbDUbaqKduP_7tsx8_pza3k3rmYhiAhX9AEqvSmI
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICDCS.2019.00080
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9781728125190
1728125197
EISSN 2575-8411
EndPage 767
ExternalDocumentID 8884802
Genre orig-research
GroupedDBID 23M
29G
29P
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i203t-fc099e47c39e9651a619f58208cab01a8d6f18522d9e7df885ee101c1495e78d3
IEDL.DBID RIE
ISICitedReferencesCount 452
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000565234200071&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:40:42 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-fc099e47c39e9651a619f58208cab01a8d6f18522d9e7df885ee101c1495e78d3
PageCount 12
ParticipantIDs ieee_primary_8884802
PublicationCentury 2000
PublicationDate 2019-Jul
PublicationDateYYYYMMDD 2019-07-01
PublicationDate_xml – month: 07
  year: 2019
  text: 2019-Jul
PublicationDecade 2010
PublicationTitle Proceedings of the International Conference on Distributed Computing Systems
PublicationTitleAbbrev ICDSC
PublicationYear 2019
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0005863
Score 2.6153903
Snippet IoT devices are increasingly deployed in daily life. Many of these devices are, however, vulnerable due to insecure design, implementation, and configuration....
SourceID ieee
SourceType Publisher
StartPage 756
SubjectTerms Anomaly detection
Data models
federated deep learning
Internet of Things
IoT malware
IoT security
Logic gates
Malware
Monitoring
Security
self-learning
Title DÏoT: A Federated Self-learning Anomaly Detection System for IoT
URI https://ieeexplore.ieee.org/document/8884802
WOSCitedRecordID wos000565234200071&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LSgMxFA21uHDloxXfZOHS2HllkrgrrcVuSqEVuit53EihzkidCn6FH-WPmcxMWxdu3A1hYOCGcM-ZnHsOQrcO0geUakVCTSOS8CQiMuWOtSqTWmCxkVEVNsFGIz6biXED3W1nYQCgFJ_BvX8s7_JNrtf-V1nHsbWEe-fIPcZYNau1k3PwNN5cQwaiM-z1exOv3PJ2lKXp46_wlLJ3DA7_99Uj1N4N4eHxtr0cowZkJ-hwk8KA60PZQt3-91c-fcBdPPDGEA47GjyBpSV1IMQLdhT_VS4_cR-KUniV4cqnHDvAiof5tI2eB4_T3hOpgxHIIgrigljtcB0kTMcCREpD6ViQpa6Xcy1VEEru6uyHoiMjgBnLOQVwR097NgSMm_gUNbM8gzOEqVHCkaaYK4eshNYKrAmVNlIyq9z756jlKzJ_q7wv5nUxLv5evkQHvuSVnPUKNYvVGq7Rvv4oFu-rm3LDfgBV1JdB
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LSsNAFL2UKuiqaiu-nYVLY_OaZuKutJYWayk0QndlHjdSqInUVPAr_Ch_zJkkbV24cReGQOAOwz0nc-45ADca0tuUSmE5krqWz3zX4i2mWatQrRgDT3G3CJsIRiM2nYbjCtxuZmEQMRef4Z15zO_yVSpX5ldZU7M1nxnnyB3q-65TTGttBR2s5a0vIu2wOeh0OxOj3TKGlLnt46_4lLx79Gr_--4BNLZjeGS8aTCHUMHkCGrrHAZSHss6tLvfX2l0T9qkZ6whNHpUZIKL2CojIV6IJvmvfPFJupjl0quEFE7lRENWMkijBjz3HqJO3yqjEay5a3uZFUuN7NAPpBdi2KIO1zwoprqbM8mF7XCmK23Gol0VYqBixiiiPnzS8CEMmPKOoZqkCZ4AoUqEmjZ5TGhsFUopMFaOkIrzIBb6_VOom4rM3gr3i1lZjLO_l69hrx89DWfDwejxHPZN-Qtx6wVUs-UKL2FXfmTz9-VVvnk_Y8OaiA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+International+Conference+on+Distributed+Computing+Systems&rft.atitle=D%C3%8FoT%3A+A+Federated+Self-learning+Anomaly+Detection+System+for+IoT&rft.au=Nguyen%2C+Thien+Duc&rft.au=Marchal%2C+Samuel&rft.au=Miettinen%2C+Markus&rft.au=Fereidooni%2C+Hossein&rft.date=2019-07-01&rft.pub=IEEE&rft.eissn=2575-8411&rft.spage=756&rft.epage=767&rft_id=info:doi/10.1109%2FICDCS.2019.00080&rft.externalDocID=8884802