DeepSEAS: Smartphone-based Early Ailment Sensing Using Coupled LSTM AutoEncoders

Infectious diseases epidemics such as the current COVID-19 pandemic have an immense impact on all facets of life. Consequently, the current dearth of effective and timely public health surveillance methods, especially at the individual level, have been accentuated, prompting research into supplement...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2020 IEEE International Conference on Big Data (Big Data) S. 4911 - 4918
Hauptverfasser: Murthy, Shreesha Narasimha, Asani, Florina, Srikanthan, Srinarayan, Agu, Emmanuel
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 10.12.2020
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Infectious diseases epidemics such as the current COVID-19 pandemic have an immense impact on all facets of life. Consequently, the current dearth of effective and timely public health surveillance methods, especially at the individual level, have been accentuated, prompting research into supplementary methods. Sensor-rich, ubiquitously owned smartphones can now gather large volumes of data that has been utilized for passive and continuous physical and mental health assessment. In this paper, we propose a Deep learning based Smartphone Early Ailment Sensing (DeepSEAS) framework that predicts a smart-phone user's future manifestation of influenza-like biological symptoms (e.g. coughing and sneezing) a day early while they are still asymptomatic. DeepSEAS works by analyzing a subject's historical one-day smartphone sensor and mobility data. First, we utilize the mean shift clustering algorithm to create clusters of users with similar social and behavioral traits such as their socialization levels, social media presence, eating and working out habits. Then, DeepSEAS employs an end-to-end trainable LSTM Autoencoder (LSTM AE) coupled with a Feed Forward Neural network classifier, a chieving a sensitivity of 7 8% i n correctly identifying users who will manifest biological symptoms a day later. DeepSEAS facilitates up-to-date influenza s urveillance at the individual level, which could transform the current healthcare system. Early detection can enable asymptomatic users to be alerted, notified and isolated, which could reduce disease transmission.
AbstractList Infectious diseases epidemics such as the current COVID-19 pandemic have an immense impact on all facets of life. Consequently, the current dearth of effective and timely public health surveillance methods, especially at the individual level, have been accentuated, prompting research into supplementary methods. Sensor-rich, ubiquitously owned smartphones can now gather large volumes of data that has been utilized for passive and continuous physical and mental health assessment. In this paper, we propose a Deep learning based Smartphone Early Ailment Sensing (DeepSEAS) framework that predicts a smart-phone user's future manifestation of influenza-like biological symptoms (e.g. coughing and sneezing) a day early while they are still asymptomatic. DeepSEAS works by analyzing a subject's historical one-day smartphone sensor and mobility data. First, we utilize the mean shift clustering algorithm to create clusters of users with similar social and behavioral traits such as their socialization levels, social media presence, eating and working out habits. Then, DeepSEAS employs an end-to-end trainable LSTM Autoencoder (LSTM AE) coupled with a Feed Forward Neural network classifier, a chieving a sensitivity of 7 8% i n correctly identifying users who will manifest biological symptoms a day later. DeepSEAS facilitates up-to-date influenza s urveillance at the individual level, which could transform the current healthcare system. Early detection can enable asymptomatic users to be alerted, notified and isolated, which could reduce disease transmission.
Author Agu, Emmanuel
Asani, Florina
Srikanthan, Srinarayan
Murthy, Shreesha Narasimha
Author_xml – sequence: 1
  givenname: Shreesha Narasimha
  surname: Murthy
  fullname: Murthy, Shreesha Narasimha
  email: snarasimhamurthy@wpi.edu
  organization: Worcester Polytechnic Institute,Worcester,MA,01609
– sequence: 2
  givenname: Florina
  surname: Asani
  fullname: Asani, Florina
  email: fasani@wpi.edu
  organization: Worcester Polytechnic Institute,Worcester,MA,01609
– sequence: 3
  givenname: Srinarayan
  surname: Srikanthan
  fullname: Srikanthan, Srinarayan
  email: ssrikanthan@wpi.edu
  organization: Worcester Polytechnic Institute,Worcester,MA,01609
– sequence: 4
  givenname: Emmanuel
  surname: Agu
  fullname: Agu, Emmanuel
  email: emmanuel@wpi.edu
  organization: Worcester Polytechnic Institute,Worcester,MA,01609
BookMark eNotj8FOhDAURWuiCx3nC9zUDwD7WlpadzjDqAlGE3A9aeExNmEKAWYxfy_R2dy7uTk5945chz4gIY_AYgBmnl78YWtnKxnjPOaMs9iINNVaXpG1STWkXIPiEuQt-doiDmWelc-0PNpxHn4WVOTshA3N7didaea7I4aZlhgmHw70-y83_Wnolk1RVh80O819Huq-wXG6Jzet7SZcX3pFql1ebd6i4vP1fZMVkedMzFHrQNjFMG1FK7WUwIVSImk1Yg1WNbIGqUVtwVjllNS1YZC4RFtZa-eMWJGHf6xHxP0w-kX-vL_cFL-rvk1h
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/BigData50022.2020.9377885
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISBN 9781728162515
1728162513
EndPage 4918
ExternalDocumentID 9377885
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i203t-fb13aa507f3f58551236634f8eec1a6d5c1583ca19a6b658c9014b48a5c8bb93
IEDL.DBID RIE
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000662554705003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Thu Jun 29 18:39:22 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-fb13aa507f3f58551236634f8eec1a6d5c1583ca19a6b658c9014b48a5c8bb93
PageCount 8
ParticipantIDs ieee_primary_9377885
PublicationCentury 2000
PublicationDate 2020-Dec.-10
PublicationDateYYYYMMDD 2020-12-10
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-Dec.-10
  day: 10
PublicationDecade 2020
PublicationTitle 2020 IEEE International Conference on Big Data (Big Data)
PublicationTitleAbbrev Big Data
PublicationYear 2020
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.7704545
Snippet Infectious diseases epidemics such as the current COVID-19 pandemic have an immense impact on all facets of life. Consequently, the current dearth of effective...
SourceID ieee
SourceType Publisher
StartPage 4911
SubjectTerms Big Data
Biology
Influenza
LSTM Autoencoder
Mean-Shift Clustering
Proximity
Sensors
Smart phones
Social networking (online)
Surveillance
Transforms
WLAN
Title DeepSEAS: Smartphone-based Early Ailment Sensing Using Coupled LSTM AutoEncoders
URI https://ieeexplore.ieee.org/document/9377885
WOSCitedRecordID wos000662554705003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JawIxFA4qbempi5bupNBjo2biJJnerAs9WBFGijfJKgN2FJ0p9N83GQdLoZfeQghZ3ju8l-T7vgfAI48UVlphRKRlqEMlRlIrjai1kitjBS7edN9HbDzms1k0qYCnPRfGGFOAz0zTN4u_fL1SuX8qa7lQ6m5sYRVUGaM7rtYReChlM1svyaIvMq_wH3iGVdBuluN_FU4p4sbw5H8rnoLGDwEPTvah5QxUTHoODnd1I7_qYNI3Zh0PuvEzjD-c7z2-3CAfkDQsFIthN1n6mWHs8enpAhbIANhb5eulGzOKp2-wm2erQeop7ZttA0yHg2nvFZWlEVAStEmGrMREuKMyS6xL-EOvoUJJx3JjFBZUhwqHnCiBI0GlSzKU_y2VHS5CxaWMyAWopW5nlwASwdqYR0wrod3lzmVcVmgqORVhSEIWXIG6N8t8vRO_mJcWuf67-wYce8t7vAdu34JatsnNHThQn1my3dwXHvsGfc-ZOg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JSwMxFH7Uup7cKu5G8OjYyWQyk_FWu6DYlsIU6a1kLQO1Le1U8N-bTIsiePEWQvZ3eC_J930P4I4lEkslsUeEib0wEtgTSiovMkYwqQ3HxZvuWzvudtlgkPRKcP_NhdFaF-Az_eCKxV--msqleyqrWldqb2x0AzZpGAb-iq21A7dr4czqUzZq8Nxp_AeOYxX4D-sev1KnFJ6jtf-_OQ-g8kPBQ71v53IIJT05gu1V5sjPY-g1tJ6lzVr6iNJ3a32HMNeec0kKFZrFqJaN3cgodQj1yQgV2ABUny5nY9umnfY7qLbMp82JI7XPFxXot5r9-rO3To7gZYFPcs8ITLjdamyIsSE_dSoqEQkN01piHikqMWVEcpzwSNgwQ7r_UhEyTiUTIiEnUJ7YlZ0CIjz2MUtiJbmy1zsbcxmuIsEiTimhcXAGx-5YhrOV_MVwfSLnf1ffwO5zv9Metl-6rxew56zg0B_Yv4RyPl_qK9iSH3m2mF8X1vsCp4OcgQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2020+IEEE+International+Conference+on+Big+Data+%28Big+Data%29&rft.atitle=DeepSEAS%3A+Smartphone-based+Early+Ailment+Sensing+Using+Coupled+LSTM+AutoEncoders&rft.au=Murthy%2C+Shreesha+Narasimha&rft.au=Asani%2C+Florina&rft.au=Srikanthan%2C+Srinarayan&rft.au=Agu%2C+Emmanuel&rft.date=2020-12-10&rft.pub=IEEE&rft.spage=4911&rft.epage=4918&rft_id=info:doi/10.1109%2FBigData50022.2020.9377885&rft.externalDocID=9377885