3D Landmark Localization in Point Clouds for the Human Ear
3D landmark localization plays an important role in many aspects of 3D data processing, from morphometric analysis to the initialization of mesh registration algorithms. In this work we address the problem of landmark localization in 3D point clouds by extending leading 2D landmark localization algo...
Uložené v:
| Vydané v: | 2020 15th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2020) s. 402 - 406 |
|---|---|
| Hlavní autori: | , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
01.11.2020
|
| Predmet: | |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | 3D landmark localization plays an important role in many aspects of 3D data processing, from morphometric analysis to the initialization of mesh registration algorithms. In this work we address the problem of landmark localization in 3D point clouds by extending leading 2D landmark localization algorithms to the 3D domain. By leveraging the PointNet++ architecture, we can construct an architecture that is invariant to the ordering of the data. Input point clouds are segmented into background and landmark regions, and offset vectors are calculated within the landmark regions to refine predicted landmark locations. We demonstrate a high landmark localization accuracy, even as the number of points in the input point cloud decreases. By making use of a 3D morphable model as a novel means of data augmentation, improved landmark localization accuracy and consistency can be obtained. We present our results for landmark localization on the human ear. |
|---|---|
| AbstractList | 3D landmark localization plays an important role in many aspects of 3D data processing, from morphometric analysis to the initialization of mesh registration algorithms. In this work we address the problem of landmark localization in 3D point clouds by extending leading 2D landmark localization algorithms to the 3D domain. By leveraging the PointNet++ architecture, we can construct an architecture that is invariant to the ordering of the data. Input point clouds are segmented into background and landmark regions, and offset vectors are calculated within the landmark regions to refine predicted landmark locations. We demonstrate a high landmark localization accuracy, even as the number of points in the input point cloud decreases. By making use of a 3D morphable model as a novel means of data augmentation, improved landmark localization accuracy and consistency can be obtained. We present our results for landmark localization on the human ear. |
| Author | Sullivan, Eimear O Zafeiriou, Stefanos |
| Author_xml | – sequence: 1 givenname: Eimear O' surname: Sullivan fullname: Sullivan, Eimear O' organization: Imperial College,London,UK – sequence: 2 givenname: Stefanos surname: Zafeiriou fullname: Zafeiriou, Stefanos organization: Imperial College,London,UK |
| BookMark | eNotzr9OwzAQgHEjwQClLwCLXyDhzk6wjw2F_kGKBAPM1SU5C4vURmk6wNODRKdv--m7UucpJ1HqBqFEBLpbbyrnPZQGDJQAQPWZWpLz6IxHC478pXqwT7rlNOx5-tRt7nmMPzzHnHRM-jXHNOtmzMfhoEOe9Pwhenvcc9Irnq7VReDxIMtTF-p9vXprtkX7snluHtsiGrBzERjDQFIjBYfBdVhxZ_rOdIx437N34tiQ7Qy4oXK2FrTeYwhCZHvxnV2o2383isjua4p_r987sgaQKvsLXrVDpw |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/FG47880.2020.00095 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9781728130798 1728130794 |
| EndPage | 406 |
| ExternalDocumentID | 9320194 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i203t-fa1fd9e519f71f7b14ab2cb2ba116ca87e7a293b207d4735e13881ffe993ce8b3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000653165300055&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Thu Jun 29 18:38:16 EDT 2023 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i203t-fa1fd9e519f71f7b14ab2cb2ba116ca87e7a293b207d4735e13881ffe993ce8b3 |
| PageCount | 5 |
| ParticipantIDs | ieee_primary_9320194 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-Nov. |
| PublicationDateYYYYMMDD | 2020-11-01 |
| PublicationDate_xml | – month: 11 year: 2020 text: 2020-Nov. |
| PublicationDecade | 2020 |
| PublicationTitle | 2020 15th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2020) |
| PublicationTitleAbbrev | FG |
| PublicationYear | 2020 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.773106 |
| Snippet | 3D landmark localization plays an important role in many aspects of 3D data processing, from morphometric analysis to the initialization of mesh registration... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 402 |
| SubjectTerms | Ear Feature extraction Human ear Landmark localisation Location awareness PCA Point cloud Point convolution Shape Solid modeling Three-dimensional displays Two dimensional displays |
| Title | 3D Landmark Localization in Point Clouds for the Human Ear |
| URI | https://ieeexplore.ieee.org/document/9320194 |
| WOSCitedRecordID | wos000653165300055&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED21FQMToBbxLQ-MhMZJFDuspYWhqjKA1K2ynbMUAQlKE35_z0koDCxsliXLsi3rvTv73QO4Nb4SFmVCF8mlbqw2nuZGeJnm3GJkXcmz1mxCrFZyvU7SAdzttTCI2H4-w3vXbN_ys9I0LlU2Ja5BjCQawlCIuNNqfetg_GS6eHKl4H2K-QL3Xct3lhG_HFNawFgc_W-qY5j8KO9YuseUExhgMYaH8JEtKeL_UNUbWzrw6cWTLC9YWuZFzWbvZZNtGTFQRoyOtal5NlfVBF4X85fZs9d7Hnh54Ie1ZxW3WYLEq6zgVmgeKR0YHWjFeWyUFCgUIbQOfJE512DkoZTcWiSeYVDq8BRGRVngGTAZSQwiwxMaEqGIE7q8FF0IFRMi2VCdw9ite_PZlbXY9Eu--Lv7Eg7dxnYyvCsY1VWD13Bgvup8W920Z7EDtNmLWg |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH7MKehJZRN_m4NH65q2LKnXuTmxjh0m7DaS9AWK2krX-ff70tXpwYu3EAghCeH73ku-9wFcG18JizKmi-RSN1YbT3MjvFRzbjGyruRZbTYhJhM5n8fTFtxstDCIWH8-w1vXrN_y08KsXKqsR1yDGEm0BdvOOatRa30rYfy4N3pwxeB9ivoC92HLd6YRvzxTasgY7f9vsgPo_mjv2HSDKofQwrwDd-E9Syjmf1flK0sc_DTySZblbFpkecUGb8UqXTLioIw4HauT82yoyi68jIazwdhrXA-8LPDDyrOK2zRGYlZWcCs0j5QOjA604rxvlBQoFGG0DnyROt9g5KGU3FokpmFQ6vAI2nmR4zEwGUkMIsNjGhKh6Md0fSm-EKpPmGRDdQIdt-7Fx7qwxaJZ8unf3VewO549J4vkcfJ0Bntuk9eivHNoV-UKL2DHfFbZsrysz-ULLACOow |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2020+15th+IEEE+International+Conference+on+Automatic+Face+and+Gesture+Recognition+%28FG+2020%29&rft.atitle=3D+Landmark+Localization+in+Point+Clouds+for+the+Human+Ear&rft.au=Sullivan%2C+Eimear+O%27&rft.au=Zafeiriou%2C+Stefanos&rft.date=2020-11-01&rft.pub=IEEE&rft.spage=402&rft.epage=406&rft_id=info:doi/10.1109%2FFG47880.2020.00095&rft.externalDocID=9320194 |