DoDNet: Learning to Segment Multi-Organ and Tumors from Multiple Partially Labeled Datasets
Due to the intensive cost of labor and expertise in annotating 3D medical images at a voxel level, most benchmark datasets are equipped with the annotations of only one type of organs and/or tumors, resulting in the so-called partially labeling issue. To address this issue, we propose a dynamic on-d...
Uloženo v:
| Vydáno v: | Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) s. 1195 - 1204 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.06.2021
|
| Témata: | |
| ISSN: | 1063-6919 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Due to the intensive cost of labor and expertise in annotating 3D medical images at a voxel level, most benchmark datasets are equipped with the annotations of only one type of organs and/or tumors, resulting in the so-called partially labeling issue. To address this issue, we propose a dynamic on-demand network (DoDNet) that learns to segment multiple organs and tumors on partially labeled datasets. DoD-Net consists of a shared encoder-decoder architecture, a task encoding module, a controller for dynamic filter generation, and a single but dynamic segmentation head. The information of current segmentation task is encoded as a task-aware prior to tell the model what the task is expected to achieve. Different from existing approaches which fix kernels after training, the kernels in dynamic head are generated adaptively by the controller, conditioned on both input image and assigned task. Thus, DoDNet is able to segment multiple organs and tumors, as done by multiple networks or a multi-head network, in a much efficient and flexible manner. We created a large-scale partially labeled dataset called MOTS and demonstrated the superior performance of our DoDNet over other competitors on seven organ and tumor segmentation tasks. We also transferred the weights pre-trained on MOTS to a downstream multi-organ segmentation task and achieved state-of-the-art performance. This study provides a general 3D medical image segmentation model that has been pre-trained on a large-scale partially labeled dataset and can be extended (after fine-tuning) to downstream volumetric medical data segmentation tasks. Code and models are available at: https://git.io/DoDNet |
|---|---|
| AbstractList | Due to the intensive cost of labor and expertise in annotating 3D medical images at a voxel level, most benchmark datasets are equipped with the annotations of only one type of organs and/or tumors, resulting in the so-called partially labeling issue. To address this issue, we propose a dynamic on-demand network (DoDNet) that learns to segment multiple organs and tumors on partially labeled datasets. DoD-Net consists of a shared encoder-decoder architecture, a task encoding module, a controller for dynamic filter generation, and a single but dynamic segmentation head. The information of current segmentation task is encoded as a task-aware prior to tell the model what the task is expected to achieve. Different from existing approaches which fix kernels after training, the kernels in dynamic head are generated adaptively by the controller, conditioned on both input image and assigned task. Thus, DoDNet is able to segment multiple organs and tumors, as done by multiple networks or a multi-head network, in a much efficient and flexible manner. We created a large-scale partially labeled dataset called MOTS and demonstrated the superior performance of our DoDNet over other competitors on seven organ and tumor segmentation tasks. We also transferred the weights pre-trained on MOTS to a downstream multi-organ segmentation task and achieved state-of-the-art performance. This study provides a general 3D medical image segmentation model that has been pre-trained on a large-scale partially labeled dataset and can be extended (after fine-tuning) to downstream volumetric medical data segmentation tasks. Code and models are available at: https://git.io/DoDNet |
| Author | Shen, Chunhua Xia, Yong Zhang, Jianpeng Xie, Yutong |
| Author_xml | – sequence: 1 givenname: Jianpeng surname: Zhang fullname: Zhang, Jianpeng email: james.zhang@mail.nwpu.edu.cn organization: Northwestern Polytechnical University,School of Computer Science and Engineering,China – sequence: 2 givenname: Yutong surname: Xie fullname: Xie, Yutong email: xuyongxie@mail.nwpu.edu.cn organization: Northwestern Polytechnical University,School of Computer Science and Engineering,China – sequence: 3 givenname: Yong surname: Xia fullname: Xia, Yong email: yxia@nwpu.edu.cn organization: Northwestern Polytechnical University,School of Computer Science and Engineering,China – sequence: 4 givenname: Chunhua surname: Shen fullname: Shen, Chunhua email: chhshen@gmail.com organization: The University of Adelaide,Australia |
| BookMark | eNotj8tOwkAUQEejiYB8gS7mB4p3Hp123BnAR1KFKLpxQW6nd0hNOyXtsODvNcHVWZzkJGfMLkIXiLFbATMhwN7Nv9bv2miVzSRIMQMQMj1jY2FMqnUKVp6zkQCjEmOFvWLTYfgBACWFMDYfse9Ft3ijeM8Lwj7UYcdjxz9o11KI_PXQxDpZ9TsMHEPFN4e26wfu-649uX1DfI19rLFpjrzAkhqq-AIjDhSHa3bpsRlo-s8J-3xcbubPSbF6epk_FEktQcXEK4vaOZNmzjkvtRfaElAJFo02mcm0w78Rb6wzZQmoJLrSSlkhlT4XlZqwm1O3JqLtvq9b7I9bm2Z5ZnL1C9f8Vf0 |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/CVPR46437.2021.00125 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences |
| EISBN | 1665445092 9781665445092 |
| EISSN | 1063-6919 |
| EndPage | 1204 |
| ExternalDocumentID | 9578768 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 10.13039/501100001809 |
| GroupedDBID | 6IE 6IH 6IL 6IN AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP OCL RIE RIL RIO |
| ID | FETCH-LOGICAL-i203t-f39a4cc657cccf24f149e0eb09a6467674ca509f69c6bb0a32acb922daebf81d3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 144 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000739917301039&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:28:29 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i203t-f39a4cc657cccf24f149e0eb09a6467674ca509f69c6bb0a32acb922daebf81d3 |
| PageCount | 10 |
| ParticipantIDs | ieee_primary_9578768 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-June |
| PublicationDateYYYYMMDD | 2021-06-01 |
| PublicationDate_xml | – month: 06 year: 2021 text: 2021-June |
| PublicationDecade | 2020 |
| PublicationTitle | Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) |
| PublicationTitleAbbrev | CVPR |
| PublicationYear | 2021 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0003211698 |
| Score | 2.5807395 |
| Snippet | Due to the intensive cost of labor and expertise in annotating 3D medical images at a voxel level, most benchmark datasets are equipped with the annotations of... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1195 |
| SubjectTerms | Annotations Encoding Head Image segmentation Labeling Task analysis Three-dimensional displays |
| Title | DoDNet: Learning to Segment Multi-Organ and Tumors from Multiple Partially Labeled Datasets |
| URI | https://ieeexplore.ieee.org/document/9578768 |
| WOSCitedRecordID | wos000739917301039&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA7b8OBp6ib-JgePxnVpljZeN4eHMYZOGXgYSfo6BrMdayv435vXlunBi7eQQAJ5Ce_78vK9R8gtaBlrYYE5NGKY4HbATD_0mFDCGMyL65vS0pNgOg0XCzVrkLu9FgYAys9ncI_NMpYfpbbAp7KewuMlwyZpBoGstFr79xTfMRmpwlod1_dUb_g2exYYl3IskPcx5ID1sH_VUCldyLj9v8WPSPdHi0dney9zTBqQnJB2DR5pfTWzDnkfpaMp5A-0zpi6onlKX2CFs9JSZstK3SXVSUTnxUe6yyhqS6qx7catgqdIbzZfdKKN80YRHencObk865LX8eN8-MTqyglszT0_Z7GvnAGsHATW2piL2PEg8MB4SkuBKdoEVkJQsVRWGuNpn2trFOeRBhM7BOufklaSJnBGKDgIrh2M1BzJlAq1xEhmFCGTAeHbc9LBvVpuq-QYy3qbLv7uviSHaIzqr9UVaeW7Aq7Jgf3M19nuprToN750omI |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG4QTfSECsbf9uDRyujKWL2CBONciKIh8UDa7o2QICNsmPjf27ct6MGLt6ZN2qSvzfu-vn7vEXINyouVMMAsGtFMcNNmuuU7TEihNebFdXVu6aAThv54LIcVcrPRwgBA_vkMbrGZx_KjxKzxqawp8Xh5_hbZbgvBnUKttXlRcS2X8aRf6uNajmx234bPAiNTlgfyFgYdsCL2ryoquRPp1_63_D5p_Kjx6HDjZw5IBRaHpFbCR1pezrRO3ntJL4TsjpY5U6c0S-gLTHFWmgttWa68pGoR0dH6I1mlFNUlxdhyblfBc6Tm8y8aKG39UUR7KrNuLksb5LV_P-oOWFk7gc2442YsdqU1gfHaHWNMzEVsmRA4oB2pPIFJ2gTWQpCxJ42ntaNcroyWnEcKdGwxrHtEqotkAceEggXhygJJxZFOSV95GMuMIuQyIFxzQuq4V5NlkR5jUm7T6d_dV2R3MHoKJsFD-HhG9tAwxc-rc1LNVmu4IDvmM5ulq8vcut9fMaWp |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+%28IEEE+Computer+Society+Conference+on+Computer+Vision+and+Pattern+Recognition.+Online%29&rft.atitle=DoDNet%3A+Learning+to+Segment+Multi-Organ+and+Tumors+from+Multiple+Partially+Labeled+Datasets&rft.au=Zhang%2C+Jianpeng&rft.au=Xie%2C+Yutong&rft.au=Xia%2C+Yong&rft.au=Shen%2C+Chunhua&rft.date=2021-06-01&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=1195&rft.epage=1204&rft_id=info:doi/10.1109%2FCVPR46437.2021.00125&rft.externalDocID=9578768 |