EEG-Transformer: Self-attention from Transformer Architecture for Decoding EEG of Imagined Speech

Transformers are groundbreaking architectures that have changed a flow of deep learning, and many high-performance models are developing based on transformer architectures. Transformers implemented only with attention with encoder-decoder structure following seq2seq without using RNN, but had better...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:The ... International Winter Conference on Brain-Computer Interface s. 1 - 4
Hlavní autoři: Lee, Young-Eun, Lee, Seo-Hyun
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 21.02.2022
Témata:
ISSN:2572-7672
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Buďte první, kdo okomentuje tento záznam!
Nejprve se musíte přihlásit.