Investigation And Comparison of Optimization Methods for Variational Autoencoder-Based Underdetermined Multichannel Source Separation
In this paper, we investigate two algorithms for variational autoencoder (VAE)-based underdetermined multichannel source separation. We previously extended the multichannel VAE (MVAE) method for determined multichannel source separation and proposed the generalized MVAE (GMVAE) method for underdeter...
Uloženo v:
| Vydáno v: | Proceedings of the ... IEEE International Conference on Acoustics, Speech and Signal Processing (1998) s. 511 - 515 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
23.05.2022
|
| Témata: | |
| ISSN: | 2379-190X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In this paper, we investigate two algorithms for variational autoencoder (VAE)-based underdetermined multichannel source separation. We previously extended the multichannel VAE (MVAE) method for determined multichannel source separation and proposed the generalized MVAE (GMVAE) method for underdetermined multichannel source separation. The GMVAE method employs a conditional VAE (CVAE) as the source model representing the power spectrograms of the underlying sources present in a mixture. While we developed a convergence-guaranteed parameter estimation algorithm using a majorization-minimization/minorization-maximization (MM) algorithm, an expectation-maximization (EM) algorithm also allows us to design another algorithm with the same property. However, a comparison of the MM-based and EM-based algorithms has not yet been revealed. To elucidate this, we investigate the MM-based and EM-based algorithms for the GMVAE method, using an improved CVAE variant called auxiliary classifier VAE (ACVAE). The experimental results suggest that the EM-based algorithm takes less computational cost, achieving comparable separation performance with the MM-based algorithm. |
|---|---|
| AbstractList | In this paper, we investigate two algorithms for variational autoencoder (VAE)-based underdetermined multichannel source separation. We previously extended the multichannel VAE (MVAE) method for determined multichannel source separation and proposed the generalized MVAE (GMVAE) method for underdetermined multichannel source separation. The GMVAE method employs a conditional VAE (CVAE) as the source model representing the power spectrograms of the underlying sources present in a mixture. While we developed a convergence-guaranteed parameter estimation algorithm using a majorization-minimization/minorization-maximization (MM) algorithm, an expectation-maximization (EM) algorithm also allows us to design another algorithm with the same property. However, a comparison of the MM-based and EM-based algorithms has not yet been revealed. To elucidate this, we investigate the MM-based and EM-based algorithms for the GMVAE method, using an improved CVAE variant called auxiliary classifier VAE (ACVAE). The experimental results suggest that the EM-based algorithm takes less computational cost, achieving comparable separation performance with the MM-based algorithm. |
| Author | Li, Li Kameoka, Hirokazu Seki, Shogo |
| Author_xml | – sequence: 1 givenname: Shogo surname: Seki fullname: Seki, Shogo organization: Nippon Telegraph and Telephone Corporation,NTT Communication Science Laboratories,Japan – sequence: 2 givenname: Hirokazu surname: Kameoka fullname: Kameoka, Hirokazu organization: Nippon Telegraph and Telephone Corporation,NTT Communication Science Laboratories,Japan – sequence: 3 givenname: Li surname: Li fullname: Li, Li organization: Nippon Telegraph and Telephone Corporation,NTT Communication Science Laboratories,Japan |
| BookMark | eNotUMFKAzEQjaJgW_0CL_mBrckmm90ca9FaaKmwVryVdDOxkd2kZFNB7_63oS0Mb-bNDG94M0RXzjtACFMyppTIh_l0UtevnMk8H-ckgSy5kBW5QEMqRMFJCnGJBjkrZUYl-bhBw77_IoRUJa8G6G_uvqGP9lNF6x2eOI2nvturYPtEvcGrfbSd_T2NlxB3XvfY-IDf086xq1o8OUQPrvEaQvaoetB47VKtIULorEt8eWijbXbKOWhx7Q-hAVxDunOUuEXXRrU93J3zCK2fn96mL9liNUsOF5nNCYuZIWBEU3AutwIIlZpXzBhWqrxUaqsbJjgVDaGaa10xSosCzJZxXQhmCFfARuj-pGsBYLMPtlPhZ3N-GfsHrUFnkQ |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/ICASSP43922.2022.9746980 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Xplore IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) (UW System Shared) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISBN | 1665405406 9781665405409 |
| EISSN | 2379-190X |
| EndPage | 515 |
| ExternalDocumentID | 9746980 |
| Genre | orig-research |
| GroupedDBID | 23M 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ABLEC ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP IPLJI M43 OCL RIE RIL RIO RNS |
| ID | FETCH-LOGICAL-i203t-f0ef6c5449b6e019d483ff37a27aabdc36416c01d4dd831155efb34d563f04ae3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000864187900103&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:25:03 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i203t-f0ef6c5449b6e019d483ff37a27aabdc36416c01d4dd831155efb34d563f04ae3 |
| PageCount | 5 |
| ParticipantIDs | ieee_primary_9746980 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-May-23 |
| PublicationDateYYYYMMDD | 2022-05-23 |
| PublicationDate_xml | – month: 05 year: 2022 text: 2022-May-23 day: 23 |
| PublicationDecade | 2020 |
| PublicationTitle | Proceedings of the ... IEEE International Conference on Acoustics, Speech and Signal Processing (1998) |
| PublicationTitleAbbrev | ICASSP |
| PublicationYear | 2022 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0008748 |
| Score | 2.1973526 |
| Snippet | In this paper, we investigate two algorithms for variational autoencoder (VAE)-based underdetermined multichannel source separation. We previously extended the... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 511 |
| SubjectTerms | Classification algorithms Conferences convergence-guaranteed algorithm Inference algorithms Optimization methods Parameter estimation Signal processing algorithms Source separation Underdetermined multichannel source separation variational autoencoder |
| Title | Investigation And Comparison of Optimization Methods for Variational Autoencoder-Based Underdetermined Multichannel Source Separation |
| URI | https://ieeexplore.ieee.org/document/9746980 |
| WOSCitedRecordID | wos000864187900103&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8MwGA5TPOjFj038JgePxnVJmqTHORx6cA6qsttokzcw0Fa2zn_g_zbJap3gxUtJQ0ohgbxP3rzP8yB06YNinImY9BgA4dRyohhXxIFnw7nOE0ltMJuQo5GaTJJxC101XBgACMVncO2b4S7flHrpU2Vdh31FotwBfUNKseJqNbuuklx9V-pESfd-0E_TsYu21LOt3KP-9peJSoghw93__X0PdX7IeHjchJl91ILiAO2s6Qi20eeaWkZZ4H5h8KDxF8SlxY9uY3irGZf4IZhGL7CDq_jFjanTgbi_rEova2lgTm5ccDM4mCKZumDGvQe2rqcKF_CK05D2xyms1MPLooOeh7dPgztS-yuQGY1YRWwEVuiY8yQX4KCe4YpZy2RGZZblRjPh0JqOeoYbo7wqTww2Z9zEgtmIZ8AO0WZRFnCEsKZcc5oxGbkBQjjYzqiDDip3aKwHDI5R20_o9H0loTGt5_Lk7-5TtO3XzF_SU3aGNqv5Es7Rlv6oZov5RVj3L_qnsTo |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1dS8MwFA1jCuqLH5v4bR58tK5L0jZ9nMOx4TYHnbK30TY3MNBWts5_4P_2Jqtzgi--lLakFG5K7unNPecQcmOSohf7ntPkAI5gWjiSC-kgeFZCpEkYMG3NJoLhUE4m4ahCbtdcGACwzWdwZ07tXr7K06UplTUQ-_qhxB_0LU8I5q7YWut1VwZCfvfquGGj125F0QjzLTN8KzyUT_-yUbFZpLP_v_cfkPoPHY-O1onmkFQgOyJ7G0qCNfK5oZeRZ7SVKdpeOwzSXNMnXBreSs4lHVjb6AVFwEpfcExZEKStZZEbYUsFc-ce05ui1hZJlS0zeG35uoYsnMErjWzhn0aw0g_Pszp57jyM212ndFhwZszlhaNd0H6KwQwTHxDsKSG51jyIWRDHiUq5j3gtdZtKKCWNLo8HOuFCeT7XroiBH5NqlmdwQmjKRCpYzAMXB_g-AnfOEDzIBPFYEzickpoJ6PR9JaIxLWN59vfta7LTHQ_6035v-HhOds38mS17xi9ItZgv4ZJspx_FbDG_st_AF1nbtIE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+of+the+...+IEEE+International+Conference+on+Acoustics%2C+Speech+and+Signal+Processing+%281998%29&rft.atitle=Investigation+And+Comparison+of+Optimization+Methods+for+Variational+Autoencoder-Based+Underdetermined+Multichannel+Source+Separation&rft.au=Seki%2C+Shogo&rft.au=Kameoka%2C+Hirokazu&rft.au=Li%2C+Li&rft.date=2022-05-23&rft.pub=IEEE&rft.eissn=2379-190X&rft.spage=511&rft.epage=515&rft_id=info:doi/10.1109%2FICASSP43922.2022.9746980&rft.externalDocID=9746980 |