Investigation And Comparison of Optimization Methods for Variational Autoencoder-Based Underdetermined Multichannel Source Separation

In this paper, we investigate two algorithms for variational autoencoder (VAE)-based underdetermined multichannel source separation. We previously extended the multichannel VAE (MVAE) method for determined multichannel source separation and proposed the generalized MVAE (GMVAE) method for underdeter...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the ... IEEE International Conference on Acoustics, Speech and Signal Processing (1998) S. 511 - 515
Hauptverfasser: Seki, Shogo, Kameoka, Hirokazu, Li, Li
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 23.05.2022
Schlagworte:
ISSN:2379-190X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In this paper, we investigate two algorithms for variational autoencoder (VAE)-based underdetermined multichannel source separation. We previously extended the multichannel VAE (MVAE) method for determined multichannel source separation and proposed the generalized MVAE (GMVAE) method for underdetermined multichannel source separation. The GMVAE method employs a conditional VAE (CVAE) as the source model representing the power spectrograms of the underlying sources present in a mixture. While we developed a convergence-guaranteed parameter estimation algorithm using a majorization-minimization/minorization-maximization (MM) algorithm, an expectation-maximization (EM) algorithm also allows us to design another algorithm with the same property. However, a comparison of the MM-based and EM-based algorithms has not yet been revealed. To elucidate this, we investigate the MM-based and EM-based algorithms for the GMVAE method, using an improved CVAE variant called auxiliary classifier VAE (ACVAE). The experimental results suggest that the EM-based algorithm takes less computational cost, achieving comparable separation performance with the MM-based algorithm.
AbstractList In this paper, we investigate two algorithms for variational autoencoder (VAE)-based underdetermined multichannel source separation. We previously extended the multichannel VAE (MVAE) method for determined multichannel source separation and proposed the generalized MVAE (GMVAE) method for underdetermined multichannel source separation. The GMVAE method employs a conditional VAE (CVAE) as the source model representing the power spectrograms of the underlying sources present in a mixture. While we developed a convergence-guaranteed parameter estimation algorithm using a majorization-minimization/minorization-maximization (MM) algorithm, an expectation-maximization (EM) algorithm also allows us to design another algorithm with the same property. However, a comparison of the MM-based and EM-based algorithms has not yet been revealed. To elucidate this, we investigate the MM-based and EM-based algorithms for the GMVAE method, using an improved CVAE variant called auxiliary classifier VAE (ACVAE). The experimental results suggest that the EM-based algorithm takes less computational cost, achieving comparable separation performance with the MM-based algorithm.
Author Li, Li
Kameoka, Hirokazu
Seki, Shogo
Author_xml – sequence: 1
  givenname: Shogo
  surname: Seki
  fullname: Seki, Shogo
  organization: Nippon Telegraph and Telephone Corporation,NTT Communication Science Laboratories,Japan
– sequence: 2
  givenname: Hirokazu
  surname: Kameoka
  fullname: Kameoka, Hirokazu
  organization: Nippon Telegraph and Telephone Corporation,NTT Communication Science Laboratories,Japan
– sequence: 3
  givenname: Li
  surname: Li
  fullname: Li, Li
  organization: Nippon Telegraph and Telephone Corporation,NTT Communication Science Laboratories,Japan
BookMark eNotUMFKAzEQjaJgW_0CL_mBrckmm90ca9FaaKmwVryVdDOxkd2kZFNB7_63oS0Mb-bNDG94M0RXzjtACFMyppTIh_l0UtevnMk8H-ckgSy5kBW5QEMqRMFJCnGJBjkrZUYl-bhBw77_IoRUJa8G6G_uvqGP9lNF6x2eOI2nvturYPtEvcGrfbSd_T2NlxB3XvfY-IDf086xq1o8OUQPrvEaQvaoetB47VKtIULorEt8eWijbXbKOWhx7Q-hAVxDunOUuEXXRrU93J3zCK2fn96mL9liNUsOF5nNCYuZIWBEU3AutwIIlZpXzBhWqrxUaqsbJjgVDaGaa10xSosCzJZxXQhmCFfARuj-pGsBYLMPtlPhZ3N-GfsHrUFnkQ
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICASSP43922.2022.9746980
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 1665405406
9781665405409
EISSN 2379-190X
EndPage 515
ExternalDocumentID 9746980
Genre orig-research
GroupedDBID 23M
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i203t-f0ef6c5449b6e019d483ff37a27aabdc36416c01d4dd831155efb34d563f04ae3
IEDL.DBID RIE
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000864187900103&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:25:03 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-f0ef6c5449b6e019d483ff37a27aabdc36416c01d4dd831155efb34d563f04ae3
PageCount 5
ParticipantIDs ieee_primary_9746980
PublicationCentury 2000
PublicationDate 2022-May-23
PublicationDateYYYYMMDD 2022-05-23
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-May-23
  day: 23
PublicationDecade 2020
PublicationTitle Proceedings of the ... IEEE International Conference on Acoustics, Speech and Signal Processing (1998)
PublicationTitleAbbrev ICASSP
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0008748
Score 2.1973526
Snippet In this paper, we investigate two algorithms for variational autoencoder (VAE)-based underdetermined multichannel source separation. We previously extended the...
SourceID ieee
SourceType Publisher
StartPage 511
SubjectTerms Classification algorithms
Conferences
convergence-guaranteed algorithm
Inference algorithms
Optimization methods
Parameter estimation
Signal processing algorithms
Source separation
Underdetermined multichannel source separation
variational autoencoder
Title Investigation And Comparison of Optimization Methods for Variational Autoencoder-Based Underdetermined Multichannel Source Separation
URI https://ieeexplore.ieee.org/document/9746980
WOSCitedRecordID wos000864187900103&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LTsMwELQK4gAXHi3iLR84EprGju0cS0UFB0qlAOqtSuy1VAkS1Kb8Af_N2g2hSFy4REmUh7SWPOv1zgwhlxwQhHScBBmHJOCip4MEANc8LMPkNVYgpPFmE3I0UpNJMm6Rq4YLAwC--Qyu3anfyzelXrpSWRdzX5EoXKBvSClWXK1m1lWSq-9OnTDp3g_6aTpGtI0c2woP9bu_TFQ8hgx3__f3PdL5IePRcQMz-6QFxQHZWdMRbJPPNbWMsqD9wtBB4y9IS0sfcWJ4qxmX9MGbRi8opqv0BZ-py4G0v6xKJ2tpYB7cILgZ6k2RTN0wg9eereuowgW80tSX_WkKK_XwsuiQ5-Ht0-AuqP0VglkUsiqwIVihY86TXACmeoYrZi2TWSSzLDeaCczWdNgz3BjlVHlisDnjJhbMhjwDdkg2i7KAI0KV6UUYHPxYprxYks0N19IpfCkmjD0mbRfQ6ftKQmNax_Lk79unZNuNmdukj9gZ2azmSzgnW_qjmi3mF37cvwAe4bIe
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT8JAEN0QNFEvfoDx2z14tFK62-32iEQCEZCkaLiR0p1NSLQ1UPwH_m9nl1ox8eKlaZt-JNNm3-zsvPcIueGAIJT4oRNzCB0umokTAuCch8WYvPoSRKCs2UQwHMrJJBxVyG3JhQEA23wGd2bXruWrLFmZUlkDc18RSpygb_mce-6arVWOuzLg8rtXxw0bvXYrikaIt57hW-GmuPuXjYpFkc7-_95_QOo_dDw6KoHmkFQgPSJ7G0qCNfK5oZeRpbSVKtouHQZppukTDg1vBeeSDqxt9JJiwkpf8JqiIEhbqzwzwpYKFs49wpui1hZJFS0zeGz5uoYsnMIrjWzhn0aw1g_P0jp57jyM212ncFhw5p7Lcke7oEWCwQxnAjDZU1wyrVkQe0Ecz1TCBOZridtUXClpdHl80DPGlS-YdnkM7JhU0yyFE0KlanoYHHxYLK1ckp4pngRG40syofQpqZmATt_XIhrTIpZnf5--Jjvd8aA_7feGj-dk13w_s2TvsQtSzRcruCTbyUc-Xy6u7D_wBYmItWU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+of+the+...+IEEE+International+Conference+on+Acoustics%2C+Speech+and+Signal+Processing+%281998%29&rft.atitle=Investigation+And+Comparison+of+Optimization+Methods+for+Variational+Autoencoder-Based+Underdetermined+Multichannel+Source+Separation&rft.au=Seki%2C+Shogo&rft.au=Kameoka%2C+Hirokazu&rft.au=Li%2C+Li&rft.date=2022-05-23&rft.pub=IEEE&rft.eissn=2379-190X&rft.spage=511&rft.epage=515&rft_id=info:doi/10.1109%2FICASSP43922.2022.9746980&rft.externalDocID=9746980