Plotly-Resampler: Effective Visual Analytics for Large Time Series

Visual analytics is arguably the most important step in getting acquainted with your data. This is especially the case for time series, as this data type is hard to describe and cannot be fully understood when using for example summary statistics. To realize effective time series visualization, four...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE Visualization Conference (Online) s. 21 - 25
Hlavní autoři: Van Der Donckt, Jonas, Van der Donckt, Jeroen, Deprost, Emiel, Van Hoecke, Sofie
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.10.2022
Témata:
ISSN:2771-9553
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Visual analytics is arguably the most important step in getting acquainted with your data. This is especially the case for time series, as this data type is hard to describe and cannot be fully understood when using for example summary statistics. To realize effective time series visualization, four requirements have to be met; a tool should be (1) interactive, (2) scalable to millions of data points, (3) integrable in conventional data science environments, and (4) highly configurable. We observe that open source Python visualization toolkits empower data scientists in most visual analytics tasks, but lack the combination of scalability and interactivity to realize effective time series visualization. As a means to facilitate these requirements, we created Plotly-Resampler, an open source Python library. Plotly-Resampler is an add-on for Plotly's Python bindings, enhancing line chart scalability on top of an interactive toolkit by aggregating the underlying data depending on the current graph view. Plotly-Resampler is built to be snappy, as the reactivity of a tool qualitatively affects how analysts visually explore and analyze data. A benchmark task highlights how our toolkit scales better than alternatives in terms of number of samples and time series. Additionally, Plotly-Resampler's flexible data aggregation functionality paves the path towards researching novel aggregation techniques. Plotly-Resampler's integrability, together with its configurability, convenience, and high scalability, allows to effectively analyze high-frequency data in your day-to-day Python environment.
AbstractList Visual analytics is arguably the most important step in getting acquainted with your data. This is especially the case for time series, as this data type is hard to describe and cannot be fully understood when using for example summary statistics. To realize effective time series visualization, four requirements have to be met; a tool should be (1) interactive, (2) scalable to millions of data points, (3) integrable in conventional data science environments, and (4) highly configurable. We observe that open source Python visualization toolkits empower data scientists in most visual analytics tasks, but lack the combination of scalability and interactivity to realize effective time series visualization. As a means to facilitate these requirements, we created Plotly-Resampler, an open source Python library. Plotly-Resampler is an add-on for Plotly's Python bindings, enhancing line chart scalability on top of an interactive toolkit by aggregating the underlying data depending on the current graph view. Plotly-Resampler is built to be snappy, as the reactivity of a tool qualitatively affects how analysts visually explore and analyze data. A benchmark task highlights how our toolkit scales better than alternatives in terms of number of samples and time series. Additionally, Plotly-Resampler's flexible data aggregation functionality paves the path towards researching novel aggregation techniques. Plotly-Resampler's integrability, together with its configurability, convenience, and high scalability, allows to effectively analyze high-frequency data in your day-to-day Python environment.
Author Deprost, Emiel
Van Hoecke, Sofie
Van Der Donckt, Jonas
Van der Donckt, Jeroen
Author_xml – sequence: 1
  givenname: Jonas
  surname: Van Der Donckt
  fullname: Van Der Donckt, Jonas
  email: jonvdrdo.donckt@ugent.be
  organization: Ghent University - imec,IDLab,Belgium
– sequence: 2
  givenname: Jeroen
  surname: Van der Donckt
  fullname: Van der Donckt, Jeroen
  organization: Ghent University - imec,IDLab,Belgium
– sequence: 3
  givenname: Emiel
  surname: Deprost
  fullname: Deprost, Emiel
  organization: Ghent University - imec,IDLab,Belgium
– sequence: 4
  givenname: Sofie
  surname: Van Hoecke
  fullname: Van Hoecke, Sofie
  organization: Ghent University - imec,IDLab,Belgium
BookMark eNotjN1KwzAYQKMouM09wW7yAq3JlzY_3s2x6aCguLnbkWZfJNKfkVShb-9Arw4cDmdKbrq-Q0IWnOWcM_Nw2O7KQkvIgQHkjDEursiUS3mxmoO4JhNQimemLMUdmaf0dWkEsIJrPSFPb00_NGP2jsm25wbjI117j24IP0gPIX3bhi4724xDcIn6PtLKxk-k-9Ai3WEMmO7JrbdNwvk_Z-Rjs96vXrLq9Xm7WlZZACaGDE-KKweFVQYFlE7VtXbaKpSGo_RQQK1MjVJoa5xyznphUOmidubkHWdiRhZ_34CIx3MMrY3j0RglALj4BbCETKs
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/VIS54862.2022.00013
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEL
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1665488123
9781665488129
EISSN 2771-9553
EndPage 25
ExternalDocumentID 9973221
Genre orig-research
GroupedDBID 6IE
6IF
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i203t-ed717c24a79e325c7bb8c8a7e691e6f242b79be638a9c7ccaf39e784bc9dfc103
IEDL.DBID RIE
ISICitedReferencesCount 14
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000904323300005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:26:03 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-ed717c24a79e325c7bb8c8a7e691e6f242b79be638a9c7ccaf39e784bc9dfc103
PageCount 5
ParticipantIDs ieee_primary_9973221
PublicationCentury 2000
PublicationDate 2022-Oct.
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-Oct.
PublicationDecade 2020
PublicationTitle IEEE Visualization Conference (Online)
PublicationTitleAbbrev VIS
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003204188
Score 2.351645
Snippet Visual analytics is arguably the most important step in getting acquainted with your data. This is especially the case for time series, as this data type is...
SourceID ieee
SourceType Publisher
StartPage 21
SubjectTerms Benchmark testing
Dash Plotly
Data aggregation
Data science
Data visualization
Open source
Python
Scalability
Time series
Time series analysis
Visual analytics
Title Plotly-Resampler: Effective Visual Analytics for Large Time Series
URI https://ieeexplore.ieee.org/document/9973221
WOSCitedRecordID wos000904323300005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA61ePCk0opvcvBobLLZ3SQeFYuClOKj9FaS7AQKpZXdreC_N7Nbqgcv3kIuYfKa5_cNIVcBtA8gPeNZ5ljqM8NcIWQ05ApQQYd4BdpmE2o00tOpGXfI9RYLAwBN8Rnc4LDJ5Rcrv8ZQ2cAgtQyixneUylus1jaeIhOeCq03xEKCm8Hk6TWa4zmirZKGlRNbGPxqodJokOH-_9Y-IP0fKB4db5XMIenAskfuxotVvfhiL1BZZPctb2nLQhy_LjqZV2u7oA3bCHIw02iW0mcs-KaI96AYD4OqT96HD2_3j2zTDIHNEy5rBkV0vHySWmVAJplXzmmvrYLcCMhD1LROGQfxOVnjVTyXIA0onTpviuAFl0eku1wt4ZjQFKJbJJ0HTDrqYLXkHFLMDworgs5OSA_ln320fBezjeinf0-fkT3c4LbA7Zx063INF2TXf9bzqrxsDukb80CTVQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEA2lCnpSacVvc_Do2s1mt0k8KpYWaylaS28lyU6gULbS3Qr-ezO7S_XgxVvIJeRzJjPz3iPkxoG0DrgNwiQxQWwTFZiUce_IpSCcdP4IVGITYjSSs5kaN8jtFgsDAGXxGdxhs8zlpyu7wVBZRyG1DKLGd1A5q0ZrbSMqPApjJmVNLcRC1ZkO3rxD3kW8VVTycqKIwS8RldKG9A7-N_ohaf-A8eh4a2aOSAOyFnkYL1fF8it4hVwjv-_6nlY8xP7xotNFvtFLWvKNIAsz9Y4pHWLJN0XEB8WIGORt8t57mjz2g1oOIVhEIS8CSP3Xy0axFgp4lFhhjLRSC-gqBl3nba0RyoC_UFpZ4XfGcQVCxsaq1FkW8mPSzFYZnBAag_8YcWMB047SacnDEGLMEDLNnExOSQvnP_-oGC_m9dTP_u6-Jnv9yctwPhyMns_JPi52Ve52QZrFegOXZNd-Fot8fVVu2DfTgpae
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=IEEE+Visualization+Conference+%28Online%29&rft.atitle=Plotly-Resampler%3A+Effective+Visual+Analytics+for+Large+Time+Series&rft.au=Van+Der+Donckt%2C+Jonas&rft.au=Van+der+Donckt%2C+Jeroen&rft.au=Deprost%2C+Emiel&rft.au=Van+Hoecke%2C+Sofie&rft.date=2022-10-01&rft.pub=IEEE&rft.eissn=2771-9553&rft.spage=21&rft.epage=25&rft_id=info:doi/10.1109%2FVIS54862.2022.00013&rft.externalDocID=9973221