Plotly-Resampler: Effective Visual Analytics for Large Time Series
Visual analytics is arguably the most important step in getting acquainted with your data. This is especially the case for time series, as this data type is hard to describe and cannot be fully understood when using for example summary statistics. To realize effective time series visualization, four...
Uloženo v:
| Vydáno v: | IEEE Visualization Conference (Online) s. 21 - 25 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.10.2022
|
| Témata: | |
| ISSN: | 2771-9553 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Visual analytics is arguably the most important step in getting acquainted with your data. This is especially the case for time series, as this data type is hard to describe and cannot be fully understood when using for example summary statistics. To realize effective time series visualization, four requirements have to be met; a tool should be (1) interactive, (2) scalable to millions of data points, (3) integrable in conventional data science environments, and (4) highly configurable. We observe that open source Python visualization toolkits empower data scientists in most visual analytics tasks, but lack the combination of scalability and interactivity to realize effective time series visualization. As a means to facilitate these requirements, we created Plotly-Resampler, an open source Python library. Plotly-Resampler is an add-on for Plotly's Python bindings, enhancing line chart scalability on top of an interactive toolkit by aggregating the underlying data depending on the current graph view. Plotly-Resampler is built to be snappy, as the reactivity of a tool qualitatively affects how analysts visually explore and analyze data. A benchmark task highlights how our toolkit scales better than alternatives in terms of number of samples and time series. Additionally, Plotly-Resampler's flexible data aggregation functionality paves the path towards researching novel aggregation techniques. Plotly-Resampler's integrability, together with its configurability, convenience, and high scalability, allows to effectively analyze high-frequency data in your day-to-day Python environment. |
|---|---|
| AbstractList | Visual analytics is arguably the most important step in getting acquainted with your data. This is especially the case for time series, as this data type is hard to describe and cannot be fully understood when using for example summary statistics. To realize effective time series visualization, four requirements have to be met; a tool should be (1) interactive, (2) scalable to millions of data points, (3) integrable in conventional data science environments, and (4) highly configurable. We observe that open source Python visualization toolkits empower data scientists in most visual analytics tasks, but lack the combination of scalability and interactivity to realize effective time series visualization. As a means to facilitate these requirements, we created Plotly-Resampler, an open source Python library. Plotly-Resampler is an add-on for Plotly's Python bindings, enhancing line chart scalability on top of an interactive toolkit by aggregating the underlying data depending on the current graph view. Plotly-Resampler is built to be snappy, as the reactivity of a tool qualitatively affects how analysts visually explore and analyze data. A benchmark task highlights how our toolkit scales better than alternatives in terms of number of samples and time series. Additionally, Plotly-Resampler's flexible data aggregation functionality paves the path towards researching novel aggregation techniques. Plotly-Resampler's integrability, together with its configurability, convenience, and high scalability, allows to effectively analyze high-frequency data in your day-to-day Python environment. |
| Author | Deprost, Emiel Van Hoecke, Sofie Van Der Donckt, Jonas Van der Donckt, Jeroen |
| Author_xml | – sequence: 1 givenname: Jonas surname: Van Der Donckt fullname: Van Der Donckt, Jonas email: jonvdrdo.donckt@ugent.be organization: Ghent University - imec,IDLab,Belgium – sequence: 2 givenname: Jeroen surname: Van der Donckt fullname: Van der Donckt, Jeroen organization: Ghent University - imec,IDLab,Belgium – sequence: 3 givenname: Emiel surname: Deprost fullname: Deprost, Emiel organization: Ghent University - imec,IDLab,Belgium – sequence: 4 givenname: Sofie surname: Van Hoecke fullname: Van Hoecke, Sofie organization: Ghent University - imec,IDLab,Belgium |
| BookMark | eNotjN1KwzAYQKMouM09wW7yAq3JlzY_3s2x6aCguLnbkWZfJNKfkVShb-9Arw4cDmdKbrq-Q0IWnOWcM_Nw2O7KQkvIgQHkjDEursiUS3mxmoO4JhNQimemLMUdmaf0dWkEsIJrPSFPb00_NGP2jsm25wbjI117j24IP0gPIX3bhi4724xDcIn6PtLKxk-k-9Ai3WEMmO7JrbdNwvk_Z-Rjs96vXrLq9Xm7WlZZACaGDE-KKweFVQYFlE7VtXbaKpSGo_RQQK1MjVJoa5xyznphUOmidubkHWdiRhZ_34CIx3MMrY3j0RglALj4BbCETKs |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/VIS54862.2022.00013 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEL IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 1665488123 9781665488129 |
| EISSN | 2771-9553 |
| EndPage | 25 |
| ExternalDocumentID | 9973221 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IF 6IL 6IN AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK OCL RIE RIL |
| ID | FETCH-LOGICAL-i203t-ed717c24a79e325c7bb8c8a7e691e6f242b79be638a9c7ccaf39e784bc9dfc103 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 14 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000904323300005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:26:03 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i203t-ed717c24a79e325c7bb8c8a7e691e6f242b79be638a9c7ccaf39e784bc9dfc103 |
| PageCount | 5 |
| ParticipantIDs | ieee_primary_9973221 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-Oct. |
| PublicationDateYYYYMMDD | 2022-10-01 |
| PublicationDate_xml | – month: 10 year: 2022 text: 2022-Oct. |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE Visualization Conference (Online) |
| PublicationTitleAbbrev | VIS |
| PublicationYear | 2022 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0003204188 |
| Score | 2.351645 |
| Snippet | Visual analytics is arguably the most important step in getting acquainted with your data. This is especially the case for time series, as this data type is... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 21 |
| SubjectTerms | Benchmark testing Dash Plotly Data aggregation Data science Data visualization Open source Python Scalability Time series Time series analysis Visual analytics |
| Title | Plotly-Resampler: Effective Visual Analytics for Large Time Series |
| URI | https://ieeexplore.ieee.org/document/9973221 |
| WOSCitedRecordID | wos000904323300005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA61ePCk0opvcvBobLLZ3SQeFYuClOKj9FaS7AQKpZXdreC_N7Nbqgcv3kIuYfKa5_cNIVcBtA8gPeNZ5ljqM8NcIWQ05ApQQYd4BdpmE2o00tOpGXfI9RYLAwBN8Rnc4LDJ5Rcrv8ZQ2cAgtQyixneUylus1jaeIhOeCq03xEKCm8Hk6TWa4zmirZKGlRNbGPxqodJokOH-_9Y-IP0fKB4db5XMIenAskfuxotVvfhiL1BZZPctb2nLQhy_LjqZV2u7oA3bCHIw02iW0mcs-KaI96AYD4OqT96HD2_3j2zTDIHNEy5rBkV0vHySWmVAJplXzmmvrYLcCMhD1LROGQfxOVnjVTyXIA0onTpviuAFl0eku1wt4ZjQFKJbJJ0HTDrqYLXkHFLMDworgs5OSA_ln320fBezjeinf0-fkT3c4LbA7Zx063INF2TXf9bzqrxsDukb80CTVQ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEA2lCnpSacVvc_Do2s1mt0k8KpYWaylaS28lyU6gULbS3Qr-ezO7S_XgxVvIJeRzJjPz3iPkxoG0DrgNwiQxQWwTFZiUce_IpSCcdP4IVGITYjSSs5kaN8jtFgsDAGXxGdxhs8zlpyu7wVBZRyG1DKLGd1A5q0ZrbSMqPApjJmVNLcRC1ZkO3rxD3kW8VVTycqKIwS8RldKG9A7-N_ohaf-A8eh4a2aOSAOyFnkYL1fF8it4hVwjv-_6nlY8xP7xotNFvtFLWvKNIAsz9Y4pHWLJN0XEB8WIGORt8t57mjz2g1oOIVhEIS8CSP3Xy0axFgp4lFhhjLRSC-gqBl3nba0RyoC_UFpZ4XfGcQVCxsaq1FkW8mPSzFYZnBAag_8YcWMB047SacnDEGLMEDLNnExOSQvnP_-oGC_m9dTP_u6-Jnv9yctwPhyMns_JPi52Ve52QZrFegOXZNd-Fot8fVVu2DfTgpae |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=IEEE+Visualization+Conference+%28Online%29&rft.atitle=Plotly-Resampler%3A+Effective+Visual+Analytics+for+Large+Time+Series&rft.au=Van+Der+Donckt%2C+Jonas&rft.au=Van+der+Donckt%2C+Jeroen&rft.au=Deprost%2C+Emiel&rft.au=Van+Hoecke%2C+Sofie&rft.date=2022-10-01&rft.pub=IEEE&rft.eissn=2771-9553&rft.spage=21&rft.epage=25&rft_id=info:doi/10.1109%2FVIS54862.2022.00013&rft.externalDocID=9973221 |