An effective compensating approach to the synthesis of sparse array with element-failures
The Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES) Algorithm is used to compensate the failure of sparse array element. A fitness function is introduced to restrict the error between pre-failed pattern and measured pattern. To minimize the function we have introduced CMA-ES algorithm. S...
Uložené v:
| Vydané v: | 2019 International Applied Computational Electromagnetics Society Symposium - China (ACES) Ročník 1; s. 1 - 2 |
|---|---|
| Hlavní autori: | , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
Applied Computational Electromagnetics Society
01.08.2019
|
| Predmet: | |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | The Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES) Algorithm is used to compensate the failure of sparse array element. A fitness function is introduced to restrict the error between pre-failed pattern and measured pattern. To minimize the function we have introduced CMA-ES algorithm. Several numerical results demonstrate the ability of this array failure compensation algorithm. |
|---|---|
| DOI: | 10.23919/ACES48530.2019.9060496 |