An effective compensating approach to the synthesis of sparse array with element-failures

The Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES) Algorithm is used to compensate the failure of sparse array element. A fitness function is introduced to restrict the error between pre-failed pattern and measured pattern. To minimize the function we have introduced CMA-ES algorithm. S...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2019 International Applied Computational Electromagnetics Society Symposium - China (ACES) Jg. 1; S. 1 - 2
Hauptverfasser: Qin, Anqi, Sheng, Yijun
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: Applied Computational Electromagnetics Society 01.08.2019
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES) Algorithm is used to compensate the failure of sparse array element. A fitness function is introduced to restrict the error between pre-failed pattern and measured pattern. To minimize the function we have introduced CMA-ES algorithm. Several numerical results demonstrate the ability of this array failure compensation algorithm.
DOI:10.23919/ACES48530.2019.9060496