An effective compensating approach to the synthesis of sparse array with element-failures
The Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES) Algorithm is used to compensate the failure of sparse array element. A fitness function is introduced to restrict the error between pre-failed pattern and measured pattern. To minimize the function we have introduced CMA-ES algorithm. S...
Uloženo v:
| Vydáno v: | 2019 International Applied Computational Electromagnetics Society Symposium - China (ACES) Ročník 1; s. 1 - 2 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
Applied Computational Electromagnetics Society
01.08.2019
|
| Témata: | |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | The Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES) Algorithm is used to compensate the failure of sparse array element. A fitness function is introduced to restrict the error between pre-failed pattern and measured pattern. To minimize the function we have introduced CMA-ES algorithm. Several numerical results demonstrate the ability of this array failure compensation algorithm. |
|---|---|
| DOI: | 10.23919/ACES48530.2019.9060496 |