Interference Motion Removal for Doppler Radar Vital Sign Detection Using Variational Encoder-Decoder Neural Network

The treatment of interfering motion contributions remains one of the key challenges in the domain of radar-based vital sign monitoring. Removal of the interference to extract the vital sign contributions is demanding due to overlapping Doppler bands, the complex structure of the interference motions...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Proceedings of the IEEE National Radar Conference (1996) s. 1 - 6
Hlavní autori: Czerkawski, Mikolaj, Ilioudis, Christos, Clemente, Carmine, Michie, Craig, Andonovic, Ivan, Tachtatzis, Christos
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 07.05.2021
Predmet:
ISSN:2375-5318
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The treatment of interfering motion contributions remains one of the key challenges in the domain of radar-based vital sign monitoring. Removal of the interference to extract the vital sign contributions is demanding due to overlapping Doppler bands, the complex structure of the interference motions and significant variations in the power levels of their contributions. A novel approach to the removal of interference through the use of a probabilistic deep learning model is presented. Results show that a convolutional encoder-decoder neural network with a variational objective is capable of learning a meaningful representation space of vital sign Doppler-time distribution facilitating their extraction from a mixture signal. The approach is tested on semi-experimental data containing real vital sign signatures and simulated returns from interfering body motions. It is demonstrated that the application of the proposed network enhances the extraction of the micro-Doppler frequency corresponding to the respiration rate.
AbstractList The treatment of interfering motion contributions remains one of the key challenges in the domain of radar-based vital sign monitoring. Removal of the interference to extract the vital sign contributions is demanding due to overlapping Doppler bands, the complex structure of the interference motions and significant variations in the power levels of their contributions. A novel approach to the removal of interference through the use of a probabilistic deep learning model is presented. Results show that a convolutional encoder-decoder neural network with a variational objective is capable of learning a meaningful representation space of vital sign Doppler-time distribution facilitating their extraction from a mixture signal. The approach is tested on semi-experimental data containing real vital sign signatures and simulated returns from interfering body motions. It is demonstrated that the application of the proposed network enhances the extraction of the micro-Doppler frequency corresponding to the respiration rate.
Author Michie, Craig
Clemente, Carmine
Tachtatzis, Christos
Andonovic, Ivan
Czerkawski, Mikolaj
Ilioudis, Christos
Author_xml – sequence: 1
  givenname: Mikolaj
  surname: Czerkawski
  fullname: Czerkawski, Mikolaj
  organization: University of Strathclyde,Department of Electronic and Electrical Engineering,Glasgow,UK,G1 1XW
– sequence: 2
  givenname: Christos
  surname: Ilioudis
  fullname: Ilioudis, Christos
  organization: University of Strathclyde,Department of Electronic and Electrical Engineering,Glasgow,UK,G1 1XW
– sequence: 3
  givenname: Carmine
  surname: Clemente
  fullname: Clemente, Carmine
  organization: University of Strathclyde,Department of Electronic and Electrical Engineering,Glasgow,UK,G1 1XW
– sequence: 4
  givenname: Craig
  surname: Michie
  fullname: Michie, Craig
  organization: University of Strathclyde,Department of Electronic and Electrical Engineering,Glasgow,UK,G1 1XW
– sequence: 5
  givenname: Ivan
  surname: Andonovic
  fullname: Andonovic, Ivan
  organization: University of Strathclyde,Department of Electronic and Electrical Engineering,Glasgow,UK,G1 1XW
– sequence: 6
  givenname: Christos
  surname: Tachtatzis
  fullname: Tachtatzis, Christos
  organization: University of Strathclyde,Department of Electronic and Electrical Engineering,Glasgow,UK,G1 1XW
BookMark eNotkE1PAjEQhqvRREB-gZdePO7a726PBlBJEBMUrqRbpqQKLemuGv-9K3KYvJknT2aSt48uYoqA0C0lJaXE3C3sxuZRip5RoQkxJSOMlkZIYSp1hoZGV1SzbhQx_Bz1GNeykJxWV6jfNO-ESN6hHmqmsYXsIUN0gJ9TG1LEC9inL7vDPmU8TofDDjI-PsSr0Hb8NWwjHkML7qgvmxC3eGVzsH97J0yiSxvIxRiOiefwmTs8h_Y75Y9rdOntroHhKQdo-TB5Gz0Vs5fH6eh-VgRGeFuAE4pL5QUzSglGnCGccuIV44RA7fQGVK2rWthKGqic1NYYL5kQqu4Mzwfo5v9uAID1IYe9zT_rU0f8F6vrYMA
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/RadarConf2147009.2021.9454986
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781728176093
1728176093
EISSN 2375-5318
EndPage 6
ExternalDocumentID 9454986
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i203t-ec46356f42966420c903130f62300ebc7de6b78b4a859e8c57a99f52446b300f3
IEDL.DBID RIE
ISICitedReferencesCount 18
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000687846300016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:50:47 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-ec46356f42966420c903130f62300ebc7de6b78b4a859e8c57a99f52446b300f3
PageCount 6
ParticipantIDs ieee_primary_9454986
PublicationCentury 2000
PublicationDate 2021-May-7
PublicationDateYYYYMMDD 2021-05-07
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-May-7
  day: 07
PublicationDecade 2020
PublicationTitle Proceedings of the IEEE National Radar Conference (1996)
PublicationTitleAbbrev RadarConf21
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0053237
Score 2.2570527
Snippet The treatment of interfering motion contributions remains one of the key challenges in the domain of radar-based vital sign monitoring. Removal of the...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Doppler radar
heart rate monitoring
Interference
Legged locomotion
Neural networks
Probabilistic logic
Radar detection
random body movement
respiration rate monitoring
Sensitivity
variational autoencoder
vital signs
Title Interference Motion Removal for Doppler Radar Vital Sign Detection Using Variational Encoder-Decoder Neural Network
URI https://ieeexplore.ieee.org/document/9454986
WOSCitedRecordID wos000687846300016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED21FUKw8NEivuUBNtzm045n2ooBqqpA1a2K3TPqQILSlN-P7aQFJBamRJYVWXaUe-_y7h3ADUqPp4n0aIAqoFGsfJoiU1QLHTGD8JFL5zP7yEejZDYT4wbcbWthENGJz7Brb92__EWu1jZV1hORYTMJa0KTc17Vam2-unEYhHwXbmsPzd4kNTTcFs3ZPjzWlNKQfL9bP-BXJxUXSIYH_1vCIXS-K_LIeBtrjqCB2THs_zATbMPKJfc2k59cdx4ywffcvEvEQFPSzw3ixIK4RZOp7RZCnpdvGelj6QRZGXECAjI1_LnOEZJBZoveC9pHdyXWzMMMjyr1eAdeh4OX-wdat1Sgy8ALS4oqsoZ02kQhZpiHp4T1bvS0AUGeh1LxBTLJExmlSSwwUTFPhdCxwQBMmhk6PIFWlmd4CsQGds3TCIVODUkUUoVaKZ9rZFqHzD-Dtt2--UflmjGvd-787-EL2LMn5KSE_BJaZbHGK9hRn-VyVVy7o_4CQ5msZQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEJ4gGh8XH2B8uwe9Wehzt3sWCEZoCCLhRtpl1nCwNaX4-91dCmrixVObzabZ7Dad75t-8w3AHSY2i8PEtlwUruUHwrFipMKSXPpUIXxkifGZ7bEoCicTPqjAw6YWBhGN-Awb-tb8y59lYqlTZU3uKzYT0i3YDnzfdVbVWuvvbuC5HtuF-9JFszmMFRHXZXO6E4-2pVQ032mUj_jVS8WEks7h_xZxBPXvmjwy2ESbY6hgegIHP-wEa7Aw6b315L7pz0OG-J6pt4kocEpamcKcmBOzaDLW_ULIy_wtJS0sjCQrJUZCQMaKQZdZQtJOddl7brXQXIm281DD0Uo_XofXTnv02LXKpgrW3LW9wkLha0s6qeIQVdzDFly7N9pSwSDbxkSwGdKEhYkfhwHHUAQs5lwGCgXQRM2Q3ilU0yzFMyA6tEsW-8hlrGgiT4QnhXCYRCqlR51zqOntm36sfDOm5c5d_D18C3vdUb837T1Fz5ewr0_LCAvZFVSLfInXsCM-i_kivzHH_gVmMa-s
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+IEEE+National+Radar+Conference+%281996%29&rft.atitle=Interference+Motion+Removal+for+Doppler+Radar+Vital+Sign+Detection+Using+Variational+Encoder-Decoder+Neural+Network&rft.au=Czerkawski%2C+Mikolaj&rft.au=Ilioudis%2C+Christos&rft.au=Clemente%2C+Carmine&rft.au=Michie%2C+Craig&rft.date=2021-05-07&rft.pub=IEEE&rft.eissn=2375-5318&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FRadarConf2147009.2021.9454986&rft.externalDocID=9454986