Confirmnet: Convolutional Firmnet and Application to Image Denoising and Inpainting
We address the problem of efficient convolutional sparse coding (CSC) and develop a non-convex-penalty-regularized CSC formulation, namely, minimax-concave CSC (MC 2 SC). MC 2 SC leads to an optimal sparse representation than the standard ℓ 1 -penalty based approach. In addition, suitable convergenc...
Uloženo v:
| Vydáno v: | Proceedings of the ... IEEE International Conference on Acoustics, Speech and Signal Processing (1998) s. 8663 - 8667 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.05.2020
|
| Témata: | |
| ISSN: | 2379-190X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We address the problem of efficient convolutional sparse coding (CSC) and develop a non-convex-penalty-regularized CSC formulation, namely, minimax-concave CSC (MC 2 SC). MC 2 SC leads to an optimal sparse representation than the standard ℓ 1 -penalty based approach. In addition, suitable convergence guarantees can also be provided for MC 2 SC. We propose a convolutional iterative firm-thresholding algorithm (CIFTA) building on our previously proposed IFTA, and its deep-unfolded version, namely, convolutional-FirmNet (ConFirmNet). As an application, we develop the ConFirmNet based sparse autoencoder (ConFirmNet-SAE) for learning an application-specific convolutional dictionary, the applications being image denoising and inpainting. Further, we also show that training ConFirmNet-SAE with the Huber loss imparts robustness to outliers. It also turns out that ConFirmNet-SAE is robust to mismatch between training and test noise conditions than convolutional learned iterative soft-thresholding algorithm (LISTA). |
|---|---|
| ISSN: | 2379-190X |
| DOI: | 10.1109/ICASSP40776.2020.9053538 |