MemoryScan: Smart Digital Transformation of Large-scale Environments for Eliciting Location Specific Knowledge
MemoryScan is a prototype community-scale virtual environment platform to elicit memory recall from current and former citizens and visitors of a selected municipality. Gathering recollections on a continuous community scale enables location-based stories to be visually tied together rather than exi...
Uloženo v:
| Vydáno v: | IEEE International Symposium on Mixed and Augmented Reality Workshops (Online) s. 207 - 211 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.10.2022
|
| Témata: | |
| ISSN: | 2771-1110 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | MemoryScan is a prototype community-scale virtual environment platform to elicit memory recall from current and former citizens and visitors of a selected municipality. Gathering recollections on a continuous community scale enables location-based stories to be visually tied together rather than existing as locationally independent reflections. The interdisciplinary project team will examine the potential advantages of using a spatially realistic virtual environment to assist in the capture of participant reflections and collect supporting privately held documents. Designed as a large 3D photorealistic environment, MemoryScan will use an eXtended reality (XR) Head-Mounted Display (HMD) or PC interface to permit the capture of oral reflections of a community's heritage with remote participant access. Should this project's experimental testing validate this view, the fully developed system will be made available to crowdsource information on a national scale. This system would benefit historians, anthropologists, political scientists, city planners, and others. |
|---|---|
| AbstractList | MemoryScan is a prototype community-scale virtual environment platform to elicit memory recall from current and former citizens and visitors of a selected municipality. Gathering recollections on a continuous community scale enables location-based stories to be visually tied together rather than existing as locationally independent reflections. The interdisciplinary project team will examine the potential advantages of using a spatially realistic virtual environment to assist in the capture of participant reflections and collect supporting privately held documents. Designed as a large 3D photorealistic environment, MemoryScan will use an eXtended reality (XR) Head-Mounted Display (HMD) or PC interface to permit the capture of oral reflections of a community's heritage with remote participant access. Should this project's experimental testing validate this view, the fully developed system will be made available to crowdsource information on a national scale. This system would benefit historians, anthropologists, political scientists, city planners, and others. |
| Author | Michlowitz, Robert A. Walters, Lori C. Kider, Joseph T. |
| Author_xml | – sequence: 1 givenname: Robert A. surname: Michlowitz fullname: Michlowitz, Robert A. email: robert.michlowitz@ucf.edu organization: University of Central Florida,IST, School of Modeling, Simulation, and Training – sequence: 2 givenname: Joseph T. surname: Kider fullname: Kider, Joseph T. email: joseph.kider@ucf.edu organization: University of Central Florida,IST, School of Modeling, Simulation, and Training – sequence: 3 givenname: Lori C. surname: Walters fullname: Walters, Lori C. email: lori.walters@ucf.edu organization: University of Central Florida,IST, School of Modeling, Simulation, and Training |
| BookMark | eNotj09LwzAchqMoOOc-gZdcPHbmfxZvY04ddgh2nkea_Foy2mS0Vdm3tzBP7-V5Xnhu0VVMERB6oGROKTGPm2K7_MyW_vAd3SA10WzOCGNzQohQF2hm9IIqJYXkSvJLNGFa04yO6g2a9f1hxDgjgnI6QXELbepOhbPxCRet7Qb8HOow2AbvOhv7KnWtHUKKOFU4t10NWe9sA3gdf0KXYgtx6PFI4XUTXBhCrHGe3FkpjuBCFRx-j-m3AV_DHbqubNPD7H-n6OtlvVu9ZfnH62a1zLPACB8ysNaWSnPKgTNaOisBnCqFY8wvjAHPtBULGMOJLJX0uvKm8spL6gmXHvgU3Z9_AwDsj10Yy057Y7QQlPI_JEBhvA |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/ISMAR-Adjunct57072.2022.00046 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE/IET Electronic Library IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore Digital Library (LUT) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9781665453653 1665453656 |
| EISSN | 2771-1110 |
| EndPage | 211 |
| ExternalDocumentID | 9974411 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IF 6IL 6IN AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK OCL RIE RIL |
| ID | FETCH-LOGICAL-i203t-eaaab67313e321bca5eec6b4c22d899ed27a48e07205b65d7fd9fd6d51d035de3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000918030200037&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:18:55 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i203t-eaaab67313e321bca5eec6b4c22d899ed27a48e07205b65d7fd9fd6d51d035de3 |
| PageCount | 5 |
| ParticipantIDs | ieee_primary_9974411 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-Oct. |
| PublicationDateYYYYMMDD | 2022-10-01 |
| PublicationDate_xml | – month: 10 year: 2022 text: 2022-Oct. |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE International Symposium on Mixed and Augmented Reality Workshops (Online) |
| PublicationTitleAbbrev | ISMAR-ADJUNCT |
| PublicationYear | 2022 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0003204131 |
| Score | 1.815933 |
| Snippet | MemoryScan is a prototype community-scale virtual environment platform to elicit memory recall from current and former citizens and visitors of a selected... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 207 |
| SubjectTerms | Human-centered computing-Human computer interaction (HCI)-Interaction paradigms-Virtual Reality Human-centered computing-Interaction design-Systems and tools for interaction design Point cloud compression Prototypes Resists Solid modeling Three-dimensional displays Urban areas Virtual environments |
| Title | MemoryScan: Smart Digital Transformation of Large-scale Environments for Eliciting Location Specific Knowledge |
| URI | https://ieeexplore.ieee.org/document/9974411 |
| WOSCitedRecordID | wos000918030200037&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1dS8MwFA1ziPiksonf5EHfrEvTpGl9G7qhuI3hpuxN8nErFW1l6wT_vUk75wRffGtLA-WeNjc5PedehE79SERAhLFfWmI8Btz3Im5PVeSqmyVSRiWh_9gTg0E0mcTDGjpfemEAoBSfwYU7LP_lm1zPHVXWiu3ilzkj75oQYeXVWvIpASV2PvY30NmijGbrdtRv33tt82ITRMEFEc53Rav6nOGvZiplLulu_e8ptlHzx5SHh8t0s4NqkDVQ1ndK2c-RDdAlHr3Z9wBfp8-uEQgeryxJ8wznCe451bc3s6gA7qwY3LC9C3deU506DTTu5RWNh8ve9Emq8d038dZED93O-OrGW7RQ8FJKgsIDKaUKReC4TuorLTmADhXTlBq70wJDhWQOLEq4CrmxgMWJCQ33DQm4gWAX1bM8gz2EI6KEgATsOM3stkcKJZVWMcRME2PYPmq4WD29V1UynhZhOvj78iHadGBUsrgjVC-mczhG6_qjSGfTkxLaL3FsqGo |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1dS8MwFA1DRX1SceK3edA369I0aVrfhk421g1xU_Y28nErFW1FN8F_b9LOOcEX39rSQLmnzU1Oz7kXoVM_EhEQYeyXlhqPAfe9iNtTFbnqZqmUUUnoPySi349Go_i2hs7nXhgAKMVncOEOy3_5ptBTR5U1Yrv4Zc7Iu8wZo6Rya80ZlYASOyP7q-hsVkiz0Rn0mnde0zzZFDHhggjnvKJVhc7wVzuVMpvcbPzvOTZR_ceWh2_nCWcL1SDfRnnPaWU_BzZEl3jwYt8EfJ09ulYgeLiwKC1yXKQ4cbpv793iAri1YHHD9i7ces505lTQOCkqIg-X3enTTOPuN_VWR_c3reFV25s1UfAySoKJB1JKFYrAsZ3UV1pyAB0qpik1dq8FhgrJHFyUcBVyYyGLUxMa7hsScAPBDlrKixx2EY6IEgJSsOM0sxsfKZRUWsUQM02MYXto28Vq_FrVyRjPwrT_9-UTtNYe9pJx0ul3D9C6A6YSyR2ipcnbFI7Qiv6YZO9vxyXMX11qq7E |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE+International+Symposium+on+Mixed+and+Augmented+Reality+Workshops+%28Online%29&rft.atitle=MemoryScan%3A+Smart+Digital+Transformation+of+Large-scale+Environments+for+Eliciting+Location+Specific+Knowledge&rft.au=Michlowitz%2C+Robert+A.&rft.au=Kider%2C+Joseph+T.&rft.au=Walters%2C+Lori+C.&rft.date=2022-10-01&rft.pub=IEEE&rft.eissn=2771-1110&rft.spage=207&rft.epage=211&rft_id=info:doi/10.1109%2FISMAR-Adjunct57072.2022.00046&rft.externalDocID=9974411 |