Concurrent Detection and Identification of Multiple Objects using YOLO Algorithm

The main purpose of this research paper is to study and report how the object detection and identification of multiple objects in an image or a video frameworks in real life. As part of this research, we have clearly presented about image classification, image localization, and image detection. The...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Symposium of Image, Signal Processing, and Artificial Vision s. 1 - 6
Hlavní autoři: Megalingam, Rajesh Kannan, Babu, Dasari Hema Teja Anirudh, Sriram, Ghali, YashwanthAvvari, Venkata Sai
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 15.09.2021
Témata:
ISSN:2329-6259
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The main purpose of this research paper is to study and report how the object detection and identification of multiple objects in an image or a video frameworks in real life. As part of this research, we have clearly presented about image classification, image localization, and image detection. The entire work is carried out with the aid of YOLOv3 (You Only Look Once, Version 3) is an object detection algorithm which helps to detect real-time objects. YOLOv3 gives accurate results. It helps in declaring the localizers, classifiers, and detection. It uses a single neural network to the full image to detect the objects using bounding boxes thereby resulting in accurate outputs. The experiments and results show that YOLOv3 is extremely accurate. This rapidness in detecting objects is helpful in situations where humans can't detect with their naked eye cannot track multiple items simultaneously in an image or video frame.
AbstractList The main purpose of this research paper is to study and report how the object detection and identification of multiple objects in an image or a video frameworks in real life. As part of this research, we have clearly presented about image classification, image localization, and image detection. The entire work is carried out with the aid of YOLOv3 (You Only Look Once, Version 3) is an object detection algorithm which helps to detect real-time objects. YOLOv3 gives accurate results. It helps in declaring the localizers, classifiers, and detection. It uses a single neural network to the full image to detect the objects using bounding boxes thereby resulting in accurate outputs. The experiments and results show that YOLOv3 is extremely accurate. This rapidness in detecting objects is helpful in situations where humans can't detect with their naked eye cannot track multiple items simultaneously in an image or video frame.
Author Sriram, Ghali
Megalingam, Rajesh Kannan
YashwanthAvvari, Venkata Sai
Babu, Dasari Hema Teja Anirudh
Author_xml – sequence: 1
  givenname: Rajesh Kannan
  surname: Megalingam
  fullname: Megalingam, Rajesh Kannan
  email: rajeshm@am.amrita.edu
  organization: Amrita Vishwa Vidyapeetham,Department of Electronics and Communication Engineering,Amritapuri,India
– sequence: 2
  givenname: Dasari Hema Teja Anirudh
  surname: Babu
  fullname: Babu, Dasari Hema Teja Anirudh
  email: dasari.anirudh278@ieee.org
  organization: Amrita Vishwa Vidyapeetham,Department of Electronics and Communication Engineering,Amritapuri,India
– sequence: 3
  givenname: Ghali
  surname: Sriram
  fullname: Sriram, Ghali
  email: sriramghali39@ieee.org
  organization: Amrita Vishwa Vidyapeetham,Department of Electronics and Communication Engineering,Amritapuri,India
– sequence: 4
  givenname: Venkata Sai
  surname: YashwanthAvvari
  fullname: YashwanthAvvari, Venkata Sai
  email: v.s.y.avvari@student.utwente.nl
  organization: University of Twente,Department of Electrical Engineering, Mathematics and Computer Science,The Netherlands
BookMark eNotkMtOwzAURA0CiVL6BWz8Aym2b-L4LqvwilQUpBYkVlXsXBdXqVMl6YK_p4JuZqSjo1nMLbuKXSTGuBRzKQU-rNar8nORgTZmroSSc8xQCaku2AxzI7XO0lMYvGQTBQoTrTK8YbNh2AkhQBqDABP2XnTRHfue4sgfaSQ3hi7yOja8bE4s-ODqP9R5_nZsx3BoiVd2dxIHfhxC3PKvalnxRbvt-jB-7-_Yta_bgWbnnrKP56d18Zosq5eyWCyToASMCaEncGRBN9qAdnWaN423SmTeGJEhWp-n1qHzIvVKQ16TxbwBShWhsR6m7P5_NxDR5tCHfd3_bM4fwC97-VR7
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/STSIVA53688.2021.9592012
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 9781665416689
1665416688
EISSN 2329-6259
EndPage 6
ExternalDocumentID 9592012
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
ID FETCH-LOGICAL-i203t-e9fe3ceb36d6836ca47ddfb205f880599bf74bc9cf04f2637aeb97d3e42e98bf3
IEDL.DBID RIE
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001320078100024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:25:12 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-e9fe3ceb36d6836ca47ddfb205f880599bf74bc9cf04f2637aeb97d3e42e98bf3
PageCount 6
ParticipantIDs ieee_primary_9592012
PublicationCentury 2000
PublicationDate 2021-Sept.-15
PublicationDateYYYYMMDD 2021-09-15
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-Sept.-15
  day: 15
PublicationDecade 2020
PublicationTitle Symposium of Image, Signal Processing, and Artificial Vision
PublicationTitleAbbrev STSIVA
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003188933
Score 1.7844219
Snippet The main purpose of this research paper is to study and report how the object detection and identification of multiple objects in an image or a video...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms anchor boxes
bounding boxes
CNN
Deep Neural Networks
image classification
image localization
Neural networks
Object detection
Planets
Real-time systems
Signal processing
Signal processing algorithms
Streaming media
YOLOv3
Title Concurrent Detection and Identification of Multiple Objects using YOLO Algorithm
URI https://ieeexplore.ieee.org/document/9592012
WOSCitedRecordID wos001320078100024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA61ePDkoxXf5ODRbXc3m2RzLGpR0LbQKvVU8pjUgu5Ku_X3m-yuFcGLtxASCDOZRybfzCB0GTm9yGNNg1BpGzh7bQLnJfAgiUIVyRSYZKZsNsEHg3Q6FaMGutrkwgBACT6Djh-Wf_km12sfKusKKpy9cgp3i3NW5Wpt4inubvrO8d9gnVB0x5Px_XOPEpZ6CFccdertv_qolGakv_u_A-yh9k8-Hh5tLM0-akB2gHZrBxLX4rlqoZFbr6uCS_gGihJllWGZGVzl49o6QIdzix9rJCEeKh-KWWGPgJ_jl-HDEPfe5vlyUby-t9FT_3ZyfRfULROCRRySIgBhgWj3QGaGpYRpmXBjrIpDap2gUiGU5YnSQtswsTEjXIIS3BBIYhCpsuQQNbM8gyOElQTKpWAQM50klEiwkGhlqWAqZUYdo5Yn0Oyjqooxq2lz8vf0KdrxPPBIi4ieoWaxXMM52tafxWK1vChZ-QWZFqEJ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA6lCnqq2opvc_DotvtIsptjUUuLfUGr1FPZJJNa0F1pt_5-k921InjxFkIIYSbzyOSbGYRuPKMXQ19SxxVSO8ZeK8d4CaFDPFd4cQQsZipvNhEOh9FsxscVdLvNhQGAHHwGTTvM__JVKjc2VNbilBt7ZRTuDiXEd4tsrW1ExdxO2zv-G67j8tZkOuk9t2nAIgvi8r1mucGvTiq5IenU_neEA9T4ycjD462tOUQVSI5QrXQhcSmg6zoam_WyKLmE7yHLcVYJjhOFi4xcXYbocKrxoMQS4pGwwZg1thj4BX4Z9Ue4_bZIV8vs9b2BnjoP07uuUzZNcJa-G2QOcA2BNE9kplgUMBmTUCktfJdqI6qUc6FDIiSX2iXaZ0EYg-ChCoD4wCOhg2NUTdIEThAWMdAw5gx8JgmhQQwaiBSaciYipsQpqlsCzT-KuhjzkjZnf09fo73udNCf93vDx3O0b_lhcRcevUDVbLWBS7QrP7PlenWVs_ULJb6kUA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Symposium+of+Image%2C+Signal+Processing%2C+and+Artificial+Vision&rft.atitle=Concurrent+Detection+and+Identification+of+Multiple+Objects+using+YOLO+Algorithm&rft.au=Megalingam%2C+Rajesh+Kannan&rft.au=Babu%2C+Dasari+Hema+Teja+Anirudh&rft.au=Sriram%2C+Ghali&rft.au=YashwanthAvvari%2C+Venkata+Sai&rft.date=2021-09-15&rft.pub=IEEE&rft.eissn=2329-6259&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FSTSIVA53688.2021.9592012&rft.externalDocID=9592012