Deep Spectral Clustering Using Dual Autoencoder Network

The clustering methods have recently absorbed even-increasing attention in learning and vision. Deep clustering combines embedding and clustering together to obtain optimal embedding subspace for clustering, which can be more effective compared with conventional clustering methods. In this paper, we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) S. 4061 - 4070
Hauptverfasser: Yang, Xu, Deng, Cheng, Zheng, Feng, Yan, Junchi, Liu, Wei
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 01.06.2019
Schlagworte:
ISSN:1063-6919
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The clustering methods have recently absorbed even-increasing attention in learning and vision. Deep clustering combines embedding and clustering together to obtain optimal embedding subspace for clustering, which can be more effective compared with conventional clustering methods. In this paper, we propose a joint learning framework for discriminative embedding and spectral clustering. We first devise a dual autoencoder network, which enforces the reconstruction constraint for the latent representations and their noisy versions, to embed the inputs into a latent space for clustering. As such the learned latent representations can be more robust to noise. Then the mutual information estimation is utilized to provide more discriminative information from the inputs. Furthermore, a deep spectral clustering method is applied to embed the latent representations into the eigenspace and subsequently clusters them, which can fully exploit the relationship between inputs to achieve optimal clustering results. Experimental results on benchmark datasets show that our method can significantly outperform state-of-the-art clustering approaches.
AbstractList The clustering methods have recently absorbed even-increasing attention in learning and vision. Deep clustering combines embedding and clustering together to obtain optimal embedding subspace for clustering, which can be more effective compared with conventional clustering methods. In this paper, we propose a joint learning framework for discriminative embedding and spectral clustering. We first devise a dual autoencoder network, which enforces the reconstruction constraint for the latent representations and their noisy versions, to embed the inputs into a latent space for clustering. As such the learned latent representations can be more robust to noise. Then the mutual information estimation is utilized to provide more discriminative information from the inputs. Furthermore, a deep spectral clustering method is applied to embed the latent representations into the eigenspace and subsequently clusters them, which can fully exploit the relationship between inputs to achieve optimal clustering results. Experimental results on benchmark datasets show that our method can significantly outperform state-of-the-art clustering approaches.
Author Yang, Xu
Yan, Junchi
Deng, Cheng
Zheng, Feng
Liu, Wei
Author_xml – sequence: 1
  givenname: Xu
  surname: Yang
  fullname: Yang, Xu
  organization: Xidian Univ
– sequence: 2
  givenname: Cheng
  surname: Deng
  fullname: Deng, Cheng
  organization: Xidian Univ
– sequence: 3
  givenname: Feng
  surname: Zheng
  fullname: Zheng, Feng
  organization: Southern Univ. of Science and Technology
– sequence: 4
  givenname: Junchi
  surname: Yan
  fullname: Yan, Junchi
  organization: Shanghai Jiao Tong Univ
– sequence: 5
  givenname: Wei
  surname: Liu
  fullname: Liu, Wei
  organization: Tencent
BookMark eNotjLFOwzAUAA0CiVIyM7DkB1Le84tje6xSCkgVIKCsles8o0BIIicR4u8BwXIn3XCn4qjtWhbiHGGBCPayfHl4XEhAuwDI0R6IxGqDWhokackcihlCQVlh0Z6IZBjeAIAkYmHNTOgVc58-9ezH6Jq0bKZh5Fi3r-l2-OVq-qnLaey49V3FMb3j8bOL72fiOLhm4OTfc7FdXz2XN9nm_vq2XG6yWgKNGVvnZUBWPuQQnGfkPUMF2husIHigXHrNhMEbxVpV0mPAvdTOKR0C0Vxc_H1rZt71sf5w8WtnrCJlJX0DMH1JZg
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR.2019.00419
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 9781728132938
1728132932
EISSN 1063-6919
EndPage 4070
ExternalDocumentID 8953592
Genre orig-research
GroupedDBID 6IE
6IH
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i203t-e9ac2f1e5cf40face1ebe0d07c81d0fc0342c7e31fc85e75d2c1f1b27aa57ff33
IEDL.DBID RIE
ISICitedReferencesCount 244
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000529484004025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 06 17:53:32 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-e9ac2f1e5cf40face1ebe0d07c81d0fc0342c7e31fc85e75d2c1f1b27aa57ff33
PageCount 10
ParticipantIDs ieee_primary_8953592
PublicationCentury 2000
PublicationDate 2019-June
PublicationDateYYYYMMDD 2019-06-01
PublicationDate_xml – month: 06
  year: 2019
  text: 2019-June
PublicationDecade 2010
PublicationTitle Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online)
PublicationTitleAbbrev CVPR
PublicationYear 2019
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003211698
Score 2.568439
Snippet The clustering methods have recently absorbed even-increasing attention in learning and vision. Deep clustering combines embedding and clustering together to...
SourceID ieee
SourceType Publisher
StartPage 4061
SubjectTerms Autoencoders
Benchmark testing
Clustering methods
Computer vision
Estimation
Mutual information
Noise
Noise measurement
Representation Learning
Statistical Learning
Title Deep Spectral Clustering Using Dual Autoencoder Network
URI https://ieeexplore.ieee.org/document/8953592
WOSCitedRecordID wos000529484004025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEB1q8eCpait-k4NHYzfJZrM5SmvxVIqo9FayyQQK0pZ219_fZHepHrx4CwNJYIZkJpM3bwAeZOaFMJ5RI1DRlHtDjSsyGlxngbkQghW-bjahptN8PtezDjweamEQsQaf4VMc1n_5bm2rmCob5loKqcOFe6RU1tRqHfIpIrxkMp237D0s0cPR5-wtYrciIWUamXR-tU-pvcek9799T2HwU4ZHZgcHcwYdXJ1Dr40bSXsqd31QY8QNiZ3kY9qCjL6qyH4QppAaEEDGVZA-V-U6klY63JJpg_0ewMfk5X30StuGCHTJE1FS1MZyz1BanybeWGTBBIlLlA1RZ-JtpPOzCgXzNpeopOOWeVZwZYxUPhjlArqr9QovgejwGhWOh2CBiTSsUhTG5tzojDtUzNor6Ec9LDYN58WiVcH13-IbOImKbiBUt9AttxXewbH9Lpe77X1tqD1c-pZK
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEB1KFfRUtRW_zcGjazfJZrM5SmupWEuRKr2VbHYCBWlLu-vvN9ldqgcv3sJAEpghmcnkzRuAOxFbzrWlgeYog4hZHegsjQPnOlNMOOc0tWWzCTkeJ7OZmjTgflcLg4gl-Awf_LD8y89WpvCpsm6iBBfKXbh7IopYWFVr7TIq3L1lYpXU_D00VN3ex-TNo7c8JWXkuXR-NVAp_ceg9b-dj6DzU4hHJjsXcwwNXJ5Aq44cSX0ut22QfcQ18b3kfeKC9D4Lz3_gppASEkD6hZM-FvnK01ZmuCHjCv3dgffB07Q3DOqWCMGChTwPUGnDLEVhbBRabZA6I4RZKI2LO0NrPKGfkcipNYlAKTJmqKUpk1oLaZ1ZTqG5XC3xDIhy71GeMRcuUB65VdJUm4RpFbMMJTXmHNpeD_N1xXoxr1Vw8bf4Fg6G09fRfPQ8frmEQ6_0ClB1Bc18U-A17JuvfLHd3JRG-wZeAZmR
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%28IEEE+Computer+Society+Conference+on+Computer+Vision+and+Pattern+Recognition.+Online%29&rft.atitle=Deep+Spectral+Clustering+Using+Dual+Autoencoder+Network&rft.au=Yang%2C+Xu&rft.au=Deng%2C+Cheng&rft.au=Zheng%2C+Feng&rft.au=Yan%2C+Junchi&rft.date=2019-06-01&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=4061&rft.epage=4070&rft_id=info:doi/10.1109%2FCVPR.2019.00419&rft.externalDocID=8953592