Unsupervised Detection of Anomalous Behavior in Wireless Devices based on Auto-Encoders

A major problem of wireless devices is the detection of security threats in an efficient manner. Several recent incidents show that malicious applications (apps) can find their ways to online markets (e.g., Google Play Store) and be available for download and installation. Such malicious apps can co...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE/IFIP Network Operations and Management Symposium s. 1 - 7
Hlavní autori: Albasir, A., Hu, Q., Al-tekreeti, M., Naik, K., Naik, N., Kozlowski, A. J., Goel, N.
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 01.04.2020
Predmet:
ISSN:2374-9709
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract A major problem of wireless devices is the detection of security threats in an efficient manner. Several recent incidents show that malicious applications (apps) can find their ways to online markets (e.g., Google Play Store) and be available for download and installation. Such malicious apps can collect sensitive data from millions of users and send them to a third-party servers. In this paper, we propose a methodology that leverages the power consumption of wireless devices to build a model that makes them more robust to the presence of malicious apps. The method consists of two stages: (i) Feature Extraction where stacked Restricted Boltzmann Machine (RBM) AutoEncoders (AE) and Principal Component Analysis (PCA) are used to extract features vector based on AE's reconstruction errors. (ii) Classifier where One-Class Support Vector Machine is trained to perform the classification task. The validation of the methodology is performed on a real measurements dataset. The obtained results show a good potential and prove that AEs' reconstruction error can be used as a good discriminating feature. The obtained detection accuracy surpasses previously reported techniques, where it reaches up to ~ 98% in some scenarios.
AbstractList A major problem of wireless devices is the detection of security threats in an efficient manner. Several recent incidents show that malicious applications (apps) can find their ways to online markets (e.g., Google Play Store) and be available for download and installation. Such malicious apps can collect sensitive data from millions of users and send them to a third-party servers. In this paper, we propose a methodology that leverages the power consumption of wireless devices to build a model that makes them more robust to the presence of malicious apps. The method consists of two stages: (i) Feature Extraction where stacked Restricted Boltzmann Machine (RBM) AutoEncoders (AE) and Principal Component Analysis (PCA) are used to extract features vector based on AE's reconstruction errors. (ii) Classifier where One-Class Support Vector Machine is trained to perform the classification task. The validation of the methodology is performed on a real measurements dataset. The obtained results show a good potential and prove that AEs' reconstruction error can be used as a good discriminating feature. The obtained detection accuracy surpasses previously reported techniques, where it reaches up to ~ 98% in some scenarios.
Author Naik, K.
Naik, N.
Goel, N.
Albasir, A.
Kozlowski, A. J.
Al-tekreeti, M.
Hu, Q.
Author_xml – sequence: 1
  givenname: A.
  surname: Albasir
  fullname: Albasir, A.
  organization: University of Waterloo,Waterloo
– sequence: 2
  givenname: Q.
  surname: Hu
  fullname: Hu, Q.
  organization: University of Waterloo,Waterloo
– sequence: 3
  givenname: M.
  surname: Al-tekreeti
  fullname: Al-tekreeti, M.
  organization: University of Waterloo,Waterloo
– sequence: 4
  givenname: K.
  surname: Naik
  fullname: Naik, K.
  organization: University of Waterloo,Waterloo
– sequence: 5
  givenname: N.
  surname: Naik
  fullname: Naik, N.
  organization: Defence School of CIS,Ministry of Defence,UK
– sequence: 6
  givenname: A. J.
  surname: Kozlowski
  fullname: Kozlowski, A. J.
  organization: Cistech Limited,Ottawa
– sequence: 7
  givenname: N.
  surname: Goel
  fullname: Goel, N.
  organization: Cistech Limited,Ottawa
BookMark eNotUMtKAzEUjaJgW_sFguQHpt7kxkmyrLU-oNqFli5LJnMHI21SJtOCf--IXR04LzhnyC5iisTYrYCJEGDv3pdvH0prNBMJEia2JxXiGRtbbYSWRijbi-dsIFGrwmqwV2yY8zeA0oAwYOtVzIc9tceQqeaP1JHvQoo8NXwa085t0yHzB_pyx5BaHiJfh5a2lHPvPQZPmVfuL9lHpocuFfPoU01tvmaXjdtmGp9wxFZP88_ZS7FYPr_OposiSMCuIIOGSiuh0ZVT5LGuhZVGGYOlU_e-EZWqwPerFNQevDUNIWJppKgVlhZH7Oa_NxDRZt-GnWt_Nqcf8BdV8VQs
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/NOMS47738.2020.9110433
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library (IEL) (UW System Shared)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781728149738
1728149738
EISSN 2374-9709
EndPage 7
ExternalDocumentID 9110433
Genre orig-research
GroupedDBID 29I
6IE
6IH
6IK
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
M43
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i203t-e838e6920f7ba4ec3dd192848836a45cf1b4b0c10440dc0c98fe3336821d43693
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000716920500156&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 03:02:00 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-e838e6920f7ba4ec3dd192848836a45cf1b4b0c10440dc0c98fe3336821d43693
PageCount 7
ParticipantIDs ieee_primary_9110433
PublicationCentury 2000
PublicationDate 2020-April
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-April
PublicationDecade 2020
PublicationTitle IEEE/IFIP Network Operations and Management Symposium
PublicationTitleAbbrev NOMS
PublicationYear 2020
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0047030
Score 2.100315
Snippet A major problem of wireless devices is the detection of security threats in an efficient manner. Several recent incidents show that malicious applications...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Communication system security
Denoising AutoEncoder
Feature extraction
Malware
Malware Detection
Power Consumption Information
Power demand
Support vector machines
Wireless communication
Wireless Devices
Wireless sensor networks
Title Unsupervised Detection of Anomalous Behavior in Wireless Devices based on Auto-Encoders
URI https://ieeexplore.ieee.org/document/9110433
WOSCitedRecordID wos000716920500156&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED61FQMsPFrEWx4YSZvEru2MCFoxQKkEFd2qxD5LlUpS5cHvx05DAYmFzYp8iuTz3Wcn33cHcM2UohjwoRcb6wamtY05lMZTyuJ5jCIOTe3pRzGZyPk8mrbgZquFQcSafIZ9N6z_5etMVe5T2cAGpqu31Ya2EHyj1frKuszt3EYBHPjRYPL89MKEoI69Ffr9xvJXC5UaQcb7_3v3AfS-pXhkugWZQ2hhegR7P6oIduFtlhbV2sV8gZrcY1mzq1KSGWIv9-_xyl7uSVMHMSfLlDjG68pmODu3zhPEQZkm1uS2KjNvlDqde170YDYevd49eE2_BG8Z-rT0UFKJPAp9I5KYoaJa2_ObtCFKecyGygQJS3wVuC7TWvkqkgYppVyGgWaUR_QYOmmW4gmQQGsutbTwbjHcKJHYnMmNMhLt-YSG6hS6bokW601JjEWzOmd_Pz6HXeeFDeHlAjplXuEl7KiPclnkV7UfPwFXSp8R
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_mFNQXPzbx2zz4aLe2ydr0UXRj4lYHbri30SUXGMx29MO_36SrU8EX30LJUcjl7pe0v98dwC0TgqLjdaxIaTcwKXXMIVeWEBrPI_QjV5WeHvhhyKfTYFSDu40WBhFL8hm2zLD8ly8TUZhPZW0dmKbe1hZsm85ZlVrrK-8ys3crDbBjB-3wZfjKfJ8a_pZrtyrbX01USgzpHfzv7YfQ_BbjkdEGZo6ghvEx7P-oI9iAt0mcFSsT9RlK8oh5ya-KSaKIvt6_R0t9vSdVJcSULGJiOK9LneP03DJTEANmkmiT-yJPrG5slO5p1oRJrzt-6FtVxwRr4do0t5BTjl7g2sqfRwwFlVKf4LgOUupFrCOUM2dzWzimz7QUtgi4Qkqpx11HMuoF9ATqcRLjKRBHSo9LrgFeo7gS_lxnTU8JxVGfUKgrzqBhlmi2WhfFmFWrc_734xvY7Y-Hg9ngKXy-gD3jkTX95RLqeVrgFeyIj3yRpdelTz8B0X-iWg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE%2FIFIP+Network+Operations+and+Management+Symposium&rft.atitle=Unsupervised+Detection+of+Anomalous+Behavior+in+Wireless+Devices+based+on+Auto-Encoders&rft.au=Albasir%2C+A.&rft.au=Hu%2C+Q.&rft.au=Al-tekreeti%2C+M.&rft.au=Naik%2C+K.&rft.date=2020-04-01&rft.pub=IEEE&rft.eissn=2374-9709&rft.spage=1&rft.epage=7&rft_id=info:doi/10.1109%2FNOMS47738.2020.9110433&rft.externalDocID=9110433