An Efficient and Composable Parallel Task Programming Library

Composability is a key component to improve programmers' productivity in writing fast market-expanding applications such as parallel machine learning algorithms and big data analytics. These applications exhibit both regular and irregular compute patterns, and are often combined with other func...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE Conference on High Performance Extreme Computing (Online) s. 1 - 7
Hlavní autoři: Lin, Chun-Xun, Huang, Tsung-Wei, Guo, Guannan, Wong, Martin D. F.
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.09.2019
Témata:
ISSN:2643-1971
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Composability is a key component to improve programmers' productivity in writing fast market-expanding applications such as parallel machine learning algorithms and big data analytics. These applications exhibit both regular and irregular compute patterns, and are often combined with other functions or libraries to compose a larger program. However, composable parallel processing has taken a back seat in many existing parallel programming libraries, making it difficult to achieve modularity in large-scale parallel programs. In this paper, we introduce a new parallel task programming library using composable tasking graphs. Our library efficiently supports task parallelism together with an intuitive task graph construction and flexible execution API set to enable reusable and composable task dependency graphs. Developers can quickly compose a large parallel program from small and modular parallel building blocks, and easily deploy the program on a multicore machine. We have evaluated our library on real-world applications. Experimental results showed our library can achieve comparable performance to Intel Threading Building Blocks with less coding effort.
AbstractList Composability is a key component to improve programmers' productivity in writing fast market-expanding applications such as parallel machine learning algorithms and big data analytics. These applications exhibit both regular and irregular compute patterns, and are often combined with other functions or libraries to compose a larger program. However, composable parallel processing has taken a back seat in many existing parallel programming libraries, making it difficult to achieve modularity in large-scale parallel programs. In this paper, we introduce a new parallel task programming library using composable tasking graphs. Our library efficiently supports task parallelism together with an intuitive task graph construction and flexible execution API set to enable reusable and composable task dependency graphs. Developers can quickly compose a large parallel program from small and modular parallel building blocks, and easily deploy the program on a multicore machine. We have evaluated our library on real-world applications. Experimental results showed our library can achieve comparable performance to Intel Threading Building Blocks with less coding effort.
Author Lin, Chun-Xun
Huang, Tsung-Wei
Wong, Martin D. F.
Guo, Guannan
Author_xml – sequence: 1
  givenname: Chun-Xun
  surname: Lin
  fullname: Lin, Chun-Xun
  organization: UIUC,Urbana,IL,US
– sequence: 2
  givenname: Tsung-Wei
  surname: Huang
  fullname: Huang, Tsung-Wei
  organization: University of Utah,Salt Lake City,UT,US
– sequence: 3
  givenname: Guannan
  surname: Guo
  fullname: Guo, Guannan
  organization: UIUC,Urbana,IL,US
– sequence: 4
  givenname: Martin D. F.
  surname: Wong
  fullname: Wong, Martin D. F.
  organization: UIUC,Urbana,IL,US
BookMark eNotj7tOw0AQAA8EEknIByCa-wGb3Vu_rqCILIcgWcJFqKO1sxcd-BGd0_D3IJFquhnNUt2N0yhKPSHEiGBfdk1VxgbQxoXFLEnyG7XE3BSYgoH0Vi1MllCENscHtZ7nLwAgMpATLdTrZtSVc77zMl40j0ddTsN5mrntRTccuO-l13uev3UTplPgYfDjSde-DRx-HtW9436W9ZUr9bmt9uUuqj_e3stNHXkDdIkkR2dNagUYgYRELFMLqbWFE-LcAJNpMXMFO85asC5xR4fYSSdF2h1ppZ7_vV5EDufgh7_44XpLv1eQSm4
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/HPEC.2019.8916447
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 1728150205
9781728150208
EISSN 2643-1971
EndPage 7
ExternalDocumentID 8916447
Genre orig-research
GroupedDBID 6IE
6IL
6IN
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i203t-e71f9259e0a103e3ee9a3b05998fe3a720a32b16f8afa6b09f4fdf11cece85cd3
IEDL.DBID RIE
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000521120100066&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:42:45 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-e71f9259e0a103e3ee9a3b05998fe3a720a32b16f8afa6b09f4fdf11cece85cd3
PageCount 7
ParticipantIDs ieee_primary_8916447
PublicationCentury 2000
PublicationDate 2019-Sept.
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-Sept.
PublicationDecade 2010
PublicationTitle IEEE Conference on High Performance Extreme Computing (Online)
PublicationTitleAbbrev HPEC
PublicationYear 2019
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003320733
Score 1.756505
Snippet Composability is a key component to improve programmers' productivity in writing fast market-expanding applications such as parallel machine learning...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Libraries
Multicore processing
multithreading
Parallel processing
Parallel programming
Task analysis
Training
Title An Efficient and Composable Parallel Task Programming Library
URI https://ieeexplore.ieee.org/document/8916447
WOSCitedRecordID wos000521120100066&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LawMhEB6S0ENPaZuUvvHQY210Na57Dgk5lLCHFHILro4Q2m5KXr-_urtNKfTSm4iOMCozo_PNB_BoEq_10AjqpM2odFpS4yXSIjgDTKZWWlMVcX1JZzO9WGR5C56OWBhErJLP8Dk2q798t7b7-FQ20MGXkTJtQztNVY3VOr6nCJFE_sHm45KzbDDNx6OYuxUOQz3vF4FKZT8m3f-tfAb9HyAeyY8m5hxaWF5A95uJgTQXswchiifjqhhEEENM6Ugcs95GXBTJzSYSpryTudm-RXExIesjyCMNaKEPr5PxfDSlDTECXSVM7Cim3GchbkFmOBMoEDMjilhpRXsUJk2YEUnBldfGG1WwzEvvPOcWI0mpdeISOuW6xCsgTqGQ3iunhJN6WGiG3iWiKKziGBR6Db2ojeVnXfti2Sji5u_uWziNCq9zsO6gs9vs8R5O7GG32m4eqg37AmjKmD8
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5qFfRUtRXf5uDRtckm3c2eS0vFWvZQobeSxwSKui19-PtNtmtF8OIthGQCk4SZSeabD-BexU7KjuKRFSaLhJUiUk5gpL0zQEVqhFFlEddhOhrJySTLa_Cww8IgYpl8ho-hWf7l27nZhKeytvS-jBDpHuwH5qwKrbV7UeE8DgyE1dclo1l7kPe6IXvLH4ftzF8UKqUF6Tf-t_YxtH6geCTfGZkTqGFxCo1vLgZSXc0m-Die9MpyEF4MUYUlYcx8FZBRJFfLQJnyTsZq9RbEhZSsDy-PVLCFFrz2e-PuIKqoEaJZTPk6wpS5zEcuSBWjHDliprgOtVakQ67SmCoea5Y4qZxKNM2ccNYxZjDQlBrLz6BezAs8B2IT5MK5xCbcCtnRkqKzMdfaJAy9Qi-gGbQxXWyrX0wrRVz-3X0Hh4Pxy3A6fBo9X8FRUP42I-sa6uvlBm_gwHyuZ6vlbbl5X4dMm4g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=IEEE+Conference+on+High+Performance+Extreme+Computing+%28Online%29&rft.atitle=An+Efficient+and+Composable+Parallel+Task+Programming+Library&rft.au=Lin%2C+Chun-Xun&rft.au=Huang%2C+Tsung-Wei&rft.au=Guo%2C+Guannan&rft.au=Wong%2C+Martin+D.+F.&rft.date=2019-09-01&rft.pub=IEEE&rft.eissn=2643-1971&rft.spage=1&rft.epage=7&rft_id=info:doi/10.1109%2FHPEC.2019.8916447&rft.externalDocID=8916447