Cross-Database Evaluation of Pain Recognition from Facial Video

So far, all studies investigating the facial expression of pain have validated methods on the same database, whereas the cross-database performance is less considered. This may be due to poor performance of well-trained models on other databases. In this paper, we propose two distinct methods to cla...

Full description

Saved in:
Bibliographic Details
Published in:2019 11th International Symposium on Image and Signal Processing and Analysis (ISPA) pp. 181 - 186
Main Authors: Othman, Ehsan, Werner, Philipp, Saxen, Frerk, Al-Hamadi, Ayoub, Walter, Steffen
Format: Conference Proceeding
Language:English
Published: IEEE 01.09.2019
Subjects:
ISSN:1849-2266
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract So far, all studies investigating the facial expression of pain have validated methods on the same database, whereas the cross-database performance is less considered. This may be due to poor performance of well-trained models on other databases. In this paper, we propose two distinct methods to classify based on the temporal information. To explore the generalization capability of pain recognition models, we do cross-database validations on two benchmark pain databases: BioVid and X-ITE. We also experiment with combining both databases. Experimental results (1) show that our methods can be successfully used to classify pain (both methods perform similarly well), (2) demonstrate that the performance is robust by verifying them cross-database, and (3) present that the performance of pain assessment is improved with more data (combined-database).
AbstractList So far, all studies investigating the facial expression of pain have validated methods on the same database, whereas the cross-database performance is less considered. This may be due to poor performance of well-trained models on other databases. In this paper, we propose two distinct methods to classify based on the temporal information. To explore the generalization capability of pain recognition models, we do cross-database validations on two benchmark pain databases: BioVid and X-ITE. We also experiment with combining both databases. Experimental results (1) show that our methods can be successfully used to classify pain (both methods perform similarly well), (2) demonstrate that the performance is robust by verifying them cross-database, and (3) present that the performance of pain assessment is improved with more data (combined-database).
Author Saxen, Frerk
Al-Hamadi, Ayoub
Walter, Steffen
Othman, Ehsan
Werner, Philipp
Author_xml – sequence: 1
  givenname: Ehsan
  surname: Othman
  fullname: Othman, Ehsan
  email: Ehsan.Othman@ovgu.de
  organization: Neuro-Information Technology group, Otto-von-Guericke University, Magdeburg, Germany
– sequence: 2
  givenname: Philipp
  surname: Werner
  fullname: Werner, Philipp
  email: Philipp.Werner@ovgu.de
  organization: Neuro-Information Technology group, Otto-von-Guericke University, Magdeburg, Germany
– sequence: 3
  givenname: Frerk
  surname: Saxen
  fullname: Saxen, Frerk
  email: Frerk.Saxen@ovgu.de
  organization: Neuro-Information Technology group, Otto-von-Guericke University, Magdeburg, Germany
– sequence: 4
  givenname: Ayoub
  surname: Al-Hamadi
  fullname: Al-Hamadi, Ayoub
  email: Ayoub.Al-Hamadi@ovgu.de
  organization: Neuro-Information Technology group, Otto-von-Guericke University, Magdeburg, Germany
– sequence: 5
  givenname: Steffen
  surname: Walter
  fullname: Walter, Steffen
  email: Steffen.Walter@uni-ulm.de
  organization: Ulm University, Ulm, Germany
BookMark eNotj8tKAzEUQKMoWOt8gLjJD8yY1yQ3Kym11ULB4mtb7uQhgelEJqPg3wva1YGzOHAuydmQh0DINWcN58zebl52i0YwbhsADa0WJ6SyBrgRwCVXrD0lMw7K1kJofUGqUlLHFLRMGQszcrcccyn1PU7YYQl09Y39F04pDzRHusM00Ofg8seQ_lwc84Gu0SXs6XvyIV-R84h9CdWRc_K2Xr0uH-vt08NmudjWSTA51UHb6JTXrtMIxkjUDKJXxluUrJPBdA4wxqh4UNBx7m1wzivUTgnNDcg5ufnvphDC_nNMBxx_9sdl-Qsy8Uwy
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ISPA.2019.8868562
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781728131405
1728131405
EISSN 1849-2266
EndPage 186
ExternalDocumentID 8868562
Genre orig-research
GroupedDBID 6IE
6IL
ABLEC
ALMA_UNASSIGNED_HOLDINGS
CBEJK
IEGSK
RIE
RIL
ID FETCH-LOGICAL-i203t-e69fc4d6cb6a8773a608fd47d9a30b3e7bc8afff41e48b11d9eccd4a6c4261783
IEDL.DBID RIE
ISICitedReferencesCount 23
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000865974800032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Jun 26 19:27:11 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-e69fc4d6cb6a8773a608fd47d9a30b3e7bc8afff41e48b11d9eccd4a6c4261783
PageCount 6
ParticipantIDs ieee_primary_8868562
PublicationCentury 2000
PublicationDate 2019-Sept.
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-Sept.
PublicationDecade 2010
PublicationTitle 2019 11th International Symposium on Image and Signal Processing and Analysis (ISPA)
PublicationTitleAbbrev ISPA
PublicationYear 2019
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssib048504798
ssib042470063
Score 1.857467
Snippet So far, all studies investigating the facial expression of pain have validated methods on the same database, whereas the cross-database performance is less...
SourceID ieee
SourceType Publisher
StartPage 181
SubjectTerms BioVid
cross-database
Deep learning
Face recognition
Feature extraction
Pain
pain assessment
Pipelines
Task analysis
X-ITE
Title Cross-Database Evaluation of Pain Recognition from Facial Video
URI https://ieeexplore.ieee.org/document/8868562
WOSCitedRecordID wos000865974800032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA61ePCk0opvcvBo7D6yeZxEaouClMUXvZU8JtBLV-rW329m264IXrwlOQxJZsg3k8w3IeQKIONGCMfSQiIlRwDTTjlmMhO9gwRy7Zsirk9yMlHTqS475LrlwgBAk3wGN9hs3vJ95VZ4VTZQSqgCD9wdKcWaq7W1HZ5xiXDb9lWBxdPV5iEzTfTg8aW8w1wuNI5Gzq8PVRo8Ge__byYHpP9DzKNlCzmHpAOLHrkdItKxe1MbxCQ6agt40yrQMob-9HmbJhTHkFBCxwavyun73EPVJ2_j0evwgW3-RWDzLMlrBkIHx71wVhglZW5EooLn0muTJzYHaZ0yIQSeAlc2Tb2OevJRJQ7jJanyI9JdVAs4JjQPXLvCFkFCdE2SoCy30kRJ2vFgA5yQHi5-9rEufTHbrPv07-Ezsof7u07BOifdermCC7Lrvur55_Ky0dc3oM6WgQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG4ImuhJDRjf9uDRlX10-zgZgxCISDaKhhvpY5pwYQ0u_n53Flhj4sVb28Ok7Uz6zbTzTQm5AYiZ5twGUSqQksMhUFbaQMe69A5CSJSririOxHgsp1OVNchtzYUBgCr5DO6wWb3lu9yu8KqsIyWXKR64Oyljcbhma22th8VMIODWfZli-XS5ecqMQtUZvmYPmM2F5lFJ-vWlSoUo_YP_zeWQtH-oeTSrQeeINGDRIvddxLrgURcaUYn26hLeNPc0K4N_-rJNFCrHkFJC-xovy-n73EHeJm_93qQ7CDY_IwTzOEyKALjyljluDddSiETzUHrHhFM6CU0CwlipvfcsAiZNFDlVasqVSrEYMQmZHJPmIl_ACaGJZ8qmJvUCSuck9NIwI3QpSVnmjYdT0sLFzz7WxS9mm3Wf_T18TfYGk-fRbDQcP52TfdzrdULWBWkWyxVckl37Vcw_l1eV7r4BpciZyA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2019+11th+International+Symposium+on+Image+and+Signal+Processing+and+Analysis+%28ISPA%29&rft.atitle=Cross-Database+Evaluation+of+Pain+Recognition+from+Facial+Video&rft.au=Othman%2C+Ehsan&rft.au=Werner%2C+Philipp&rft.au=Saxen%2C+Frerk&rft.au=Al-Hamadi%2C+Ayoub&rft.date=2019-09-01&rft.pub=IEEE&rft.eissn=1849-2266&rft.spage=181&rft.epage=186&rft_id=info:doi/10.1109%2FISPA.2019.8868562&rft.externalDocID=8868562