miTarDigger: A Fusion Deep-learning Approach for Predicting Human miRNA Targets

MicroRNAs (miRNAs) are small non-coding RNAs that achieve post-transcriptional regulation of RNA silencing and gene expression by targeting messenger RNAs (mRNAs). Rapid and effective detection of miRNAs target sites is a significantly important topic in bioinformatics. In this study, a deep learnin...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2020 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) s. 2891 - 2897
Hlavní autoři: Yan, Jianrong, Li, Yanan, Zhu, Min
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 16.12.2020
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract MicroRNAs (miRNAs) are small non-coding RNAs that achieve post-transcriptional regulation of RNA silencing and gene expression by targeting messenger RNAs (mRNAs). Rapid and effective detection of miRNAs target sites is a significantly important topic in bioinformatics. In this study, a deep learning approach based on fusion of stacked denoising autoencoders (SDA) and Convolutional denoising autoencoders (CAE) is developed for sequence and structure data respectively with the help of an existing duplex sequence model. Compared with four conventional machine learning methods, the proposed fusion model performs better in terms of the accuracy, precision, recall, AUC (Area under the curve) and Fl-score. A web system is also developed to identify and display the microRNA target sites effectively and Rapidly.
AbstractList MicroRNAs (miRNAs) are small non-coding RNAs that achieve post-transcriptional regulation of RNA silencing and gene expression by targeting messenger RNAs (mRNAs). Rapid and effective detection of miRNAs target sites is a significantly important topic in bioinformatics. In this study, a deep learning approach based on fusion of stacked denoising autoencoders (SDA) and Convolutional denoising autoencoders (CAE) is developed for sequence and structure data respectively with the help of an existing duplex sequence model. Compared with four conventional machine learning methods, the proposed fusion model performs better in terms of the accuracy, precision, recall, AUC (Area under the curve) and Fl-score. A web system is also developed to identify and display the microRNA target sites effectively and Rapidly.
Author Yan, Jianrong
Zhu, Min
Li, Yanan
Author_xml – sequence: 1
  givenname: Jianrong
  surname: Yan
  fullname: Yan, Jianrong
  email: 2018223045146@stu.scu.edu.cn
  organization: Sichuan University,College of Computer Science,Chengdu,Country,610065
– sequence: 2
  givenname: Yanan
  surname: Li
  fullname: Li, Yanan
  email: lyn19950705@163.com
  organization: Sichuan University,College of Computer Science,Chengdu,Country,610065
– sequence: 3
  givenname: Min
  surname: Zhu
  fullname: Zhu, Min
  email: zhumin@scu.edu.cn
  organization: Sichuan University,College of Computer Science,Chengdu,Country,610065
BookMark eNotj9FOwjAYRmsiF4o8gYnpC2y2_bu19W6ACAkKMXhNuu3vbMK6pRsXvr0YuTrJd3HynXtyG7qAhDxxlnLOzPN8M3-XxkieCiZYaoBDxuQNmRmluRKa54Jn6o7sWn-wcembBuMLLejqPPgu0CVin5zQxuBDQ4u-j52tvqnrIt1HrH01_u3rc2sDbf3nR0EvlgbH4YFMnD0NOLtySr5Wr4fFOtnu3jaLYpt4wWBMMIdMKifg8kNn6JgrUYnccjDcgatzEAa0tHVVSqfQOQ26RgTLUCErNUzJ47_XI-Kxj7618ed4zYRfQ01MXw
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/BIBM49941.2020.9313504
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library (IEL) (UW System Shared)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781728162157
1728162157
EndPage 2897
ExternalDocumentID 9313504
Genre orig-research
GrantInformation_xml – fundername: Ministry of Science and Technology
  funderid: 10.13039/501100003711
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i203t-e63547f2316285ef0fbe726a1391f3fd6329384adcb4f7eff838dee3a0e7e0b83
IEDL.DBID RIE
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000659487102144&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Thu Jun 29 18:38:07 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-e63547f2316285ef0fbe726a1391f3fd6329384adcb4f7eff838dee3a0e7e0b83
PageCount 7
ParticipantIDs ieee_primary_9313504
PublicationCentury 2000
PublicationDate 2020-Dec.-16
PublicationDateYYYYMMDD 2020-12-16
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-Dec.-16
  day: 16
PublicationDecade 2020
PublicationTitle 2020 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
PublicationTitleAbbrev BIBM
PublicationYear 2020
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.75029
Snippet MicroRNAs (miRNAs) are small non-coding RNAs that achieve post-transcriptional regulation of RNA silencing and gene expression by targeting messenger RNAs...
SourceID ieee
SourceType Publisher
StartPage 2891
SubjectTerms convolutional denoising autoencoders
Decoding
deep learning
Feature extraction
Immune system
miRNA
miRNA target site
Noise reduction
Predictive models
Regulation
RNA
stacked denoising autoencoders
Title miTarDigger: A Fusion Deep-learning Approach for Predicting Human miRNA Targets
URI https://ieeexplore.ieee.org/document/9313504
WOSCitedRecordID wos000659487102144&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA61ePCk0opvcvBo2uxmm4e31loUtBap0pskm0nZQx9sW3-_SbpUBC_eQggJTEjmy-T7ZhC6kVKlRtmcGCENybT2Z44DJ-Bc1jFGJzYSZD-exXAoJxM1qqHbnRYGACL5DFqhGf_y7SLfhFBZW7GEdULyzz0h-FarVYl-E6ravafei8fvWXj1pbRVDf5VNSU6jcHh_5Y7Qs0f9R0e7fzKMarBvIFeZ8VYl_1iOoXyDnfxYBPCXLgPsCRV5Ycp7lYJwrFHon6K8AcTWM04RurxrHgbdvE4Ur9XTfQ-eBjfP5KqGAIpUsrWBDwyyITzcCyIHsFRZ0CkXHsElzjmLGfecctM29xkTnhTSyYtANMUBFAj2QmqzxdzOEXYgKQdfwv6yWzmNKhUAHCnmaLM6cScoUYwxudym-_is7LD-d_dF-gg2DtQPBJ-ierrcgNXaD__Wher8jpu0jcUl5VU
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA5jCnpS2cTf5uDRbGmTtqm3zTk23OqQKruNpH0pPewH3ebfb9KVieDFWwghgReS9-Xl-95D6EGI0FVhmhAVCEW4lObM-eAT0Jp7SkknLQmyn6MgisR0Gk5q6HGvhQGAknwGLdss__LTZbK1obJ2yBzm2eSfBx7nLt2ptSrZr0PDdnfYHRsEz-27z6Wtavivuiml2-if_G_BU9T80d_hyd6znKEaLBrobZ7HsujlWQbFE-7g_tYGunAPYEWq2g8Z7lQpwrHBomYK-wtjec24jNXjef4edXBckr_XTfTRf4mfB6Qqh0Byl7INAYMNeKANILOyR9BUKwhcXxoM52imU58Z1y24TBPFdWCMLZhIAZikEABVgp2j-mK5gAuEFQjqmXvQTJZyLSF0AwBfSxZSpqWjLlHDGmO22mW8mFV2uPq7-x4dDeLxaDYaRq_X6Nja3hI-HP8G1TfFFm7RYfK1ydfFXblh3wlgmJs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2020+IEEE+International+Conference+on+Bioinformatics+and+Biomedicine+%28BIBM%29&rft.atitle=miTarDigger%3A+A+Fusion+Deep-learning+Approach+for+Predicting+Human+miRNA+Targets&rft.au=Yan%2C+Jianrong&rft.au=Li%2C+Yanan&rft.au=Zhu%2C+Min&rft.date=2020-12-16&rft.pub=IEEE&rft.spage=2891&rft.epage=2897&rft_id=info:doi/10.1109%2FBIBM49941.2020.9313504&rft.externalDocID=9313504