miTarDigger: A Fusion Deep-learning Approach for Predicting Human miRNA Targets
MicroRNAs (miRNAs) are small non-coding RNAs that achieve post-transcriptional regulation of RNA silencing and gene expression by targeting messenger RNAs (mRNAs). Rapid and effective detection of miRNAs target sites is a significantly important topic in bioinformatics. In this study, a deep learnin...
Uložené v:
| Vydané v: | 2020 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) s. 2891 - 2897 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
16.12.2020
|
| Predmet: | |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | MicroRNAs (miRNAs) are small non-coding RNAs that achieve post-transcriptional regulation of RNA silencing and gene expression by targeting messenger RNAs (mRNAs). Rapid and effective detection of miRNAs target sites is a significantly important topic in bioinformatics. In this study, a deep learning approach based on fusion of stacked denoising autoencoders (SDA) and Convolutional denoising autoencoders (CAE) is developed for sequence and structure data respectively with the help of an existing duplex sequence model. Compared with four conventional machine learning methods, the proposed fusion model performs better in terms of the accuracy, precision, recall, AUC (Area under the curve) and Fl-score. A web system is also developed to identify and display the microRNA target sites effectively and Rapidly. |
|---|---|
| AbstractList | MicroRNAs (miRNAs) are small non-coding RNAs that achieve post-transcriptional regulation of RNA silencing and gene expression by targeting messenger RNAs (mRNAs). Rapid and effective detection of miRNAs target sites is a significantly important topic in bioinformatics. In this study, a deep learning approach based on fusion of stacked denoising autoencoders (SDA) and Convolutional denoising autoencoders (CAE) is developed for sequence and structure data respectively with the help of an existing duplex sequence model. Compared with four conventional machine learning methods, the proposed fusion model performs better in terms of the accuracy, precision, recall, AUC (Area under the curve) and Fl-score. A web system is also developed to identify and display the microRNA target sites effectively and Rapidly. |
| Author | Yan, Jianrong Zhu, Min Li, Yanan |
| Author_xml | – sequence: 1 givenname: Jianrong surname: Yan fullname: Yan, Jianrong email: 2018223045146@stu.scu.edu.cn organization: Sichuan University,College of Computer Science,Chengdu,Country,610065 – sequence: 2 givenname: Yanan surname: Li fullname: Li, Yanan email: lyn19950705@163.com organization: Sichuan University,College of Computer Science,Chengdu,Country,610065 – sequence: 3 givenname: Min surname: Zhu fullname: Zhu, Min email: zhumin@scu.edu.cn organization: Sichuan University,College of Computer Science,Chengdu,Country,610065 |
| BookMark | eNotj9FOwjAYRmsiF4o8gYnpC2y2_bu19W6ACAkKMXhNuu3vbMK6pRsXvr0YuTrJd3HynXtyG7qAhDxxlnLOzPN8M3-XxkieCiZYaoBDxuQNmRmluRKa54Jn6o7sWn-wcembBuMLLejqPPgu0CVin5zQxuBDQ4u-j52tvqnrIt1HrH01_u3rc2sDbf3nR0EvlgbH4YFMnD0NOLtySr5Wr4fFOtnu3jaLYpt4wWBMMIdMKifg8kNn6JgrUYnccjDcgatzEAa0tHVVSqfQOQ26RgTLUCErNUzJ47_XI-Kxj7618ed4zYRfQ01MXw |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/BIBM49941.2020.9313504 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9781728162157 1728162157 |
| EndPage | 2897 |
| ExternalDocumentID | 9313504 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Ministry of Science and Technology funderid: 10.13039/501100003711 |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i203t-e63547f2316285ef0fbe726a1391f3fd6329384adcb4f7eff838dee3a0e7e0b83 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000659487102144&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Thu Jun 29 18:38:07 EDT 2023 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i203t-e63547f2316285ef0fbe726a1391f3fd6329384adcb4f7eff838dee3a0e7e0b83 |
| PageCount | 7 |
| ParticipantIDs | ieee_primary_9313504 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-Dec.-16 |
| PublicationDateYYYYMMDD | 2020-12-16 |
| PublicationDate_xml | – month: 12 year: 2020 text: 2020-Dec.-16 day: 16 |
| PublicationDecade | 2020 |
| PublicationTitle | 2020 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) |
| PublicationTitleAbbrev | BIBM |
| PublicationYear | 2020 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.7503879 |
| Snippet | MicroRNAs (miRNAs) are small non-coding RNAs that achieve post-transcriptional regulation of RNA silencing and gene expression by targeting messenger RNAs... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 2891 |
| SubjectTerms | convolutional denoising autoencoders Decoding deep learning Feature extraction Immune system miRNA miRNA target site Noise reduction Predictive models Regulation RNA stacked denoising autoencoders |
| Title | miTarDigger: A Fusion Deep-learning Approach for Predicting Human miRNA Targets |
| URI | https://ieeexplore.ieee.org/document/9313504 |
| WOSCitedRecordID | wos000659487102144&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA61ePCk0opvcvBo2myyJllvrbUoaC1SpbeSTSZlD32wbf39JulSEbx4CyEkMDnMN4_vG4RuEs0UKJMRDRZIyllOtBGWUOaCGpUVIpYLPl_kYKDG42xYQ7c7LgwAxOYzaIVlrOXbhdmEVFk74wm_C-Kfe1KKLVerIv0mNGt3n7uvHr-nIepjtFUd_jU1JTqN_uH_njtCzR_2HR7u_MoxqsG8gd5mxUiXvWI6hfIed3B_E9JcuAewJNXkhynuVALh2CNRf0WowYSuZhwz9XhWvA86eBRbv1dN9NF_HD08kWoYAikY5WsCHhmk0nk4FkiP4KjLQTKhPYJLHHdWcO-4VaqtyVMnwTnFlQXgmoIEmit-gurzxRxOEc58yGEND-f8MjMqiAKyO-ucSRNl3RlqBGNMllu9i0llh_O_ty_QQbB3aPFIxCWqr8sNXKF987UuVuV1_KRvBB6UYw |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG4ImuhJDRjf9uDRQrctu11vIBKIsBKzGm5kt52SPfDIAv5-22WDMfHirWmaNpke5pvH9w1CD17CJEgVkgQ0EMFZShLla0KZcWpU2veLcsHnMIgiOZmE4wp63HNhAKBoPoOGWxa1fL1UW5cqa4bc4y0n_nnQEoLRHVurpP16NGx2Bp2RRfDCxX2MNsrjv-amFG6jd_K_B09R_Yd_h8d7z3KGKrCoobd5Fid5N5vNIH_CbdzbukQX7gKsSDn7YYbbpUQ4tljUXuGqMK6vGRe5ejzP3qM2jovm73UdffRe4uc-KcchkIxRviFgsYEIjAVkjvYIhpoUAuYnFsN5hhvtc-u6pUi0SoUJwBjJpQbgCYUAaCr5Oaoulgu4QDi0QYdW3J2zy1BJJwvIWtoYJTypzSWqOWNMVzvFi2lph6u_t-_RUT8eDafDQfR6jY6d7V3Dh-ffoOom38ItOlRfm2yd3xUf9g3sopeq |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2020+IEEE+International+Conference+on+Bioinformatics+and+Biomedicine+%28BIBM%29&rft.atitle=miTarDigger%3A+A+Fusion+Deep-learning+Approach+for+Predicting+Human+miRNA+Targets&rft.au=Yan%2C+Jianrong&rft.au=Li%2C+Yanan&rft.au=Zhu%2C+Min&rft.date=2020-12-16&rft.pub=IEEE&rft.spage=2891&rft.epage=2897&rft_id=info:doi/10.1109%2FBIBM49941.2020.9313504&rft.externalDocID=9313504 |